Solve for y, z
y=11
z = -\frac{27}{2} = -13\frac{1}{2} = -13.5
Share
Copied to clipboard
6y-66=0
Consider the first equation. Subtract 14 from -52 to get -66.
6y=66
Add 66 to both sides. Anything plus zero gives itself.
y=\frac{66}{6}
Divide both sides by 6.
y=11
Divide 66 by 6 to get 11.
3\times 11+2z-6=0
Consider the second equation. Insert the known values of variables into the equation.
33+2z-6=0
Multiply 3 and 11 to get 33.
27+2z=0
Subtract 6 from 33 to get 27.
2z=-27
Subtract 27 from both sides. Anything subtracted from zero gives its negation.
z=-\frac{27}{2}
Divide both sides by 2.
y=11 z=-\frac{27}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}