Solve for s, t
t = \frac{17}{4} = 4\frac{1}{4} = 4.25
s = \frac{5}{4} = 1\frac{1}{4} = 1.25
Share
Copied to clipboard
4s=4+1
Consider the second equation. Add 1 to both sides.
4s=5
Add 4 and 1 to get 5.
s=\frac{5}{4}
Divide both sides by 4.
6\times \frac{5}{4}+t=3\times \frac{5}{4}+8
Consider the first equation. Insert the known values of variables into the equation.
\frac{15}{2}+t=3\times \frac{5}{4}+8
Multiply 6 and \frac{5}{4} to get \frac{15}{2}.
\frac{15}{2}+t=\frac{15}{4}+8
Multiply 3 and \frac{5}{4} to get \frac{15}{4}.
\frac{15}{2}+t=\frac{47}{4}
Add \frac{15}{4} and 8 to get \frac{47}{4}.
t=\frac{47}{4}-\frac{15}{2}
Subtract \frac{15}{2} from both sides.
t=\frac{17}{4}
Subtract \frac{15}{2} from \frac{47}{4} to get \frac{17}{4}.
s=\frac{5}{4} t=\frac{17}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}