Skip to main content
Solve for A, B
Tick mark Image

Similar Problems from Web Search

Share

10830=9A+45B
Consider the first equation. Multiply 57 and 190 to get 10830.
9A+45B=10830
Swap sides so that all variable terms are on the left hand side.
45A+285B=289.168
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
9A+45B=10830,45A+285B=289.168
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
9A+45B=10830
Choose one of the equations and solve it for A by isolating A on the left hand side of the equal sign.
9A=-45B+10830
Subtract 45B from both sides of the equation.
A=\frac{1}{9}\left(-45B+10830\right)
Divide both sides by 9.
A=-5B+\frac{3610}{3}
Multiply \frac{1}{9} times -45B+10830.
45\left(-5B+\frac{3610}{3}\right)+285B=289.168
Substitute -5B+\frac{3610}{3} for A in the other equation, 45A+285B=289.168.
-225B+54150+285B=289.168
Multiply 45 times -5B+\frac{3610}{3}.
60B+54150=289.168
Add -225B to 285B.
60B=-53860.832
Subtract 54150 from both sides of the equation.
B=-\frac{1683151}{1875}
Divide both sides by 60.
A=-5\left(-\frac{1683151}{1875}\right)+\frac{3610}{3}
Substitute -\frac{1683151}{1875} for B in A=-5B+\frac{3610}{3}. Because the resulting equation contains only one variable, you can solve for A directly.
A=\frac{1683151}{375}+\frac{3610}{3}
Multiply -5 times -\frac{1683151}{1875}.
A=\frac{711467}{125}
Add \frac{3610}{3} to \frac{1683151}{375} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
A=\frac{711467}{125},B=-\frac{1683151}{1875}
The system is now solved.
10830=9A+45B
Consider the first equation. Multiply 57 and 190 to get 10830.
9A+45B=10830
Swap sides so that all variable terms are on the left hand side.
45A+285B=289.168
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
9A+45B=10830,45A+285B=289.168
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}9&45\\45&285\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}10830\\289.168\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}9&45\\45&285\end{matrix}\right))\left(\begin{matrix}9&45\\45&285\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}9&45\\45&285\end{matrix}\right))\left(\begin{matrix}10830\\289.168\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}9&45\\45&285\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}9&45\\45&285\end{matrix}\right))\left(\begin{matrix}10830\\289.168\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}9&45\\45&285\end{matrix}\right))\left(\begin{matrix}10830\\289.168\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{285}{9\times 285-45\times 45}&-\frac{45}{9\times 285-45\times 45}\\-\frac{45}{9\times 285-45\times 45}&\frac{9}{9\times 285-45\times 45}\end{matrix}\right)\left(\begin{matrix}10830\\289.168\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{19}{36}&-\frac{1}{12}\\-\frac{1}{12}&\frac{1}{60}\end{matrix}\right)\left(\begin{matrix}10830\\289.168\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{19}{36}\times 10830-\frac{1}{12}\times 289.168\\-\frac{1}{12}\times 10830+\frac{1}{60}\times 289.168\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{711467}{125}\\-\frac{1683151}{1875}\end{matrix}\right)
Do the arithmetic.
A=\frac{711467}{125},B=-\frac{1683151}{1875}
Extract the matrix elements A and B.
10830=9A+45B
Consider the first equation. Multiply 57 and 190 to get 10830.
9A+45B=10830
Swap sides so that all variable terms are on the left hand side.
45A+285B=289.168
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
9A+45B=10830,45A+285B=289.168
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
45\times 9A+45\times 45B=45\times 10830,9\times 45A+9\times 285B=9\times 289.168
To make 9A and 45A equal, multiply all terms on each side of the first equation by 45 and all terms on each side of the second by 9.
405A+2025B=487350,405A+2565B=2602.512
Simplify.
405A-405A+2025B-2565B=487350-2602.512
Subtract 405A+2565B=2602.512 from 405A+2025B=487350 by subtracting like terms on each side of the equal sign.
2025B-2565B=487350-2602.512
Add 405A to -405A. Terms 405A and -405A cancel out, leaving an equation with only one variable that can be solved.
-540B=487350-2602.512
Add 2025B to -2565B.
-540B=484747.488
Add 487350 to -2602.512.
B=-\frac{1683151}{1875}
Divide both sides by -540.
45A+285\left(-\frac{1683151}{1875}\right)=289.168
Substitute -\frac{1683151}{1875} for B in 45A+285B=289.168. Because the resulting equation contains only one variable, you can solve for A directly.
45A-\frac{31979869}{125}=289.168
Multiply 285 times -\frac{1683151}{1875}.
45A=\frac{6403203}{25}
Add \frac{31979869}{125} to both sides of the equation.
A=\frac{711467}{125}
Divide both sides by 45.
A=\frac{711467}{125},B=-\frac{1683151}{1875}
The system is now solved.