Solve for x, y, z
x = \frac{301}{101} = 2\frac{99}{101} \approx 2.98019802
y=\frac{29}{101}\approx 0.287128713
z = \frac{316}{101} = 3\frac{13}{101} \approx 3.128712871
Share
Copied to clipboard
8x+y-z=21 4x+6y-5z=-2 5x-3y+2x=20
Reorder the equations.
y=-8x+z+21
Solve 8x+y-z=21 for y.
4x+6\left(-8x+z+21\right)-5z=-2 5x-3\left(-8x+z+21\right)+2x=20
Substitute -8x+z+21 for y in the second and third equation.
x=\frac{32}{11}+\frac{1}{44}z z=-\frac{83}{3}+\frac{31}{3}x
Solve these equations for x and z respectively.
z=-\frac{83}{3}+\frac{31}{3}\left(\frac{32}{11}+\frac{1}{44}z\right)
Substitute \frac{32}{11}+\frac{1}{44}z for x in the equation z=-\frac{83}{3}+\frac{31}{3}x.
z=\frac{316}{101}
Solve z=-\frac{83}{3}+\frac{31}{3}\left(\frac{32}{11}+\frac{1}{44}z\right) for z.
x=\frac{32}{11}+\frac{1}{44}\times \frac{316}{101}
Substitute \frac{316}{101} for z in the equation x=\frac{32}{11}+\frac{1}{44}z.
x=\frac{301}{101}
Calculate x from x=\frac{32}{11}+\frac{1}{44}\times \frac{316}{101}.
y=-8\times \frac{301}{101}+\frac{316}{101}+21
Substitute \frac{301}{101} for x and \frac{316}{101} for z in the equation y=-8x+z+21.
y=\frac{29}{101}
Calculate y from y=-8\times \frac{301}{101}+\frac{316}{101}+21.
x=\frac{301}{101} y=\frac{29}{101} z=\frac{316}{101}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}