Solve for x, y, z
x = \frac{100}{9} = 11\frac{1}{9} \approx 11.111111111
y = \frac{775}{9} = 86\frac{1}{9} \approx 86.111111111
z = \frac{50}{3} = 16\frac{2}{3} \approx 16.666666667
Share
Copied to clipboard
x=100-\frac{4}{5}y-\frac{6}{5}z
Solve 5x+4y+6z=500 for x.
4\left(100-\frac{4}{5}y-\frac{6}{5}z\right)+2y+2z=250 3\left(100-\frac{4}{5}y-\frac{6}{5}z\right)+3y+2z=325
Substitute 100-\frac{4}{5}y-\frac{6}{5}z for x in the second and third equation.
y=125-\frac{7}{3}z z=-\frac{125}{8}+\frac{3}{8}y
Solve these equations for y and z respectively.
z=-\frac{125}{8}+\frac{3}{8}\left(125-\frac{7}{3}z\right)
Substitute 125-\frac{7}{3}z for y in the equation z=-\frac{125}{8}+\frac{3}{8}y.
z=\frac{50}{3}
Solve z=-\frac{125}{8}+\frac{3}{8}\left(125-\frac{7}{3}z\right) for z.
y=125-\frac{7}{3}\times \frac{50}{3}
Substitute \frac{50}{3} for z in the equation y=125-\frac{7}{3}z.
y=\frac{775}{9}
Calculate y from y=125-\frac{7}{3}\times \frac{50}{3}.
x=100-\frac{4}{5}\times \frac{775}{9}-\frac{6}{5}\times \frac{50}{3}
Substitute \frac{775}{9} for y and \frac{50}{3} for z in the equation x=100-\frac{4}{5}y-\frac{6}{5}z.
x=\frac{100}{9}
Calculate x from x=100-\frac{4}{5}\times \frac{775}{9}-\frac{6}{5}\times \frac{50}{3}.
x=\frac{100}{9} y=\frac{775}{9} z=\frac{50}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}