Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x+3y=450,3x+4y=913
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x+3y=450
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x=-3y+450
Subtract 3y from both sides of the equation.
x=\frac{1}{5}\left(-3y+450\right)
Divide both sides by 5.
x=-\frac{3}{5}y+90
Multiply \frac{1}{5} times -3y+450.
3\left(-\frac{3}{5}y+90\right)+4y=913
Substitute -\frac{3y}{5}+90 for x in the other equation, 3x+4y=913.
-\frac{9}{5}y+270+4y=913
Multiply 3 times -\frac{3y}{5}+90.
\frac{11}{5}y+270=913
Add -\frac{9y}{5} to 4y.
\frac{11}{5}y=643
Subtract 270 from both sides of the equation.
y=\frac{3215}{11}
Divide both sides of the equation by \frac{11}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{3}{5}\times \frac{3215}{11}+90
Substitute \frac{3215}{11} for y in x=-\frac{3}{5}y+90. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{1929}{11}+90
Multiply -\frac{3}{5} times \frac{3215}{11} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=-\frac{939}{11}
Add 90 to -\frac{1929}{11}.
x=-\frac{939}{11},y=\frac{3215}{11}
The system is now solved.
5x+3y=450,3x+4y=913
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}450\\913\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&3\\3&4\end{matrix}\right))\left(\begin{matrix}5&3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\3&4\end{matrix}\right))\left(\begin{matrix}450\\913\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&3\\3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\3&4\end{matrix}\right))\left(\begin{matrix}450\\913\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\3&4\end{matrix}\right))\left(\begin{matrix}450\\913\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5\times 4-3\times 3}&-\frac{3}{5\times 4-3\times 3}\\-\frac{3}{5\times 4-3\times 3}&\frac{5}{5\times 4-3\times 3}\end{matrix}\right)\left(\begin{matrix}450\\913\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}&-\frac{3}{11}\\-\frac{3}{11}&\frac{5}{11}\end{matrix}\right)\left(\begin{matrix}450\\913\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}\times 450-\frac{3}{11}\times 913\\-\frac{3}{11}\times 450+\frac{5}{11}\times 913\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{939}{11}\\\frac{3215}{11}\end{matrix}\right)
Do the arithmetic.
x=-\frac{939}{11},y=\frac{3215}{11}
Extract the matrix elements x and y.
5x+3y=450,3x+4y=913
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\times 5x+3\times 3y=3\times 450,5\times 3x+5\times 4y=5\times 913
To make 5x and 3x equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 5.
15x+9y=1350,15x+20y=4565
Simplify.
15x-15x+9y-20y=1350-4565
Subtract 15x+20y=4565 from 15x+9y=1350 by subtracting like terms on each side of the equal sign.
9y-20y=1350-4565
Add 15x to -15x. Terms 15x and -15x cancel out, leaving an equation with only one variable that can be solved.
-11y=1350-4565
Add 9y to -20y.
-11y=-3215
Add 1350 to -4565.
y=\frac{3215}{11}
Divide both sides by -11.
3x+4\times \frac{3215}{11}=913
Substitute \frac{3215}{11} for y in 3x+4y=913. Because the resulting equation contains only one variable, you can solve for x directly.
3x+\frac{12860}{11}=913
Multiply 4 times \frac{3215}{11}.
3x=-\frac{2817}{11}
Subtract \frac{12860}{11} from both sides of the equation.
x=-\frac{939}{11}
Divide both sides by 3.
x=-\frac{939}{11},y=\frac{3215}{11}
The system is now solved.