Solve for x, y
x = \frac{63}{4} = 15\frac{3}{4} = 15.75
y = \frac{55}{4} = 13\frac{3}{4} = 13.75
Graph
Share
Copied to clipboard
5x+3y=120,7x+9y=234
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x+3y=120
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x=-3y+120
Subtract 3y from both sides of the equation.
x=\frac{1}{5}\left(-3y+120\right)
Divide both sides by 5.
x=-\frac{3}{5}y+24
Multiply \frac{1}{5} times -3y+120.
7\left(-\frac{3}{5}y+24\right)+9y=234
Substitute -\frac{3y}{5}+24 for x in the other equation, 7x+9y=234.
-\frac{21}{5}y+168+9y=234
Multiply 7 times -\frac{3y}{5}+24.
\frac{24}{5}y+168=234
Add -\frac{21y}{5} to 9y.
\frac{24}{5}y=66
Subtract 168 from both sides of the equation.
y=\frac{55}{4}
Divide both sides of the equation by \frac{24}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{3}{5}\times \frac{55}{4}+24
Substitute \frac{55}{4} for y in x=-\frac{3}{5}y+24. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{33}{4}+24
Multiply -\frac{3}{5} times \frac{55}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{63}{4}
Add 24 to -\frac{33}{4}.
x=\frac{63}{4},y=\frac{55}{4}
The system is now solved.
5x+3y=120,7x+9y=234
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&3\\7&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}120\\234\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&3\\7&9\end{matrix}\right))\left(\begin{matrix}5&3\\7&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\7&9\end{matrix}\right))\left(\begin{matrix}120\\234\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&3\\7&9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\7&9\end{matrix}\right))\left(\begin{matrix}120\\234\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\7&9\end{matrix}\right))\left(\begin{matrix}120\\234\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{5\times 9-3\times 7}&-\frac{3}{5\times 9-3\times 7}\\-\frac{7}{5\times 9-3\times 7}&\frac{5}{5\times 9-3\times 7}\end{matrix}\right)\left(\begin{matrix}120\\234\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}&-\frac{1}{8}\\-\frac{7}{24}&\frac{5}{24}\end{matrix}\right)\left(\begin{matrix}120\\234\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}\times 120-\frac{1}{8}\times 234\\-\frac{7}{24}\times 120+\frac{5}{24}\times 234\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{63}{4}\\\frac{55}{4}\end{matrix}\right)
Do the arithmetic.
x=\frac{63}{4},y=\frac{55}{4}
Extract the matrix elements x and y.
5x+3y=120,7x+9y=234
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
7\times 5x+7\times 3y=7\times 120,5\times 7x+5\times 9y=5\times 234
To make 5x and 7x equal, multiply all terms on each side of the first equation by 7 and all terms on each side of the second by 5.
35x+21y=840,35x+45y=1170
Simplify.
35x-35x+21y-45y=840-1170
Subtract 35x+45y=1170 from 35x+21y=840 by subtracting like terms on each side of the equal sign.
21y-45y=840-1170
Add 35x to -35x. Terms 35x and -35x cancel out, leaving an equation with only one variable that can be solved.
-24y=840-1170
Add 21y to -45y.
-24y=-330
Add 840 to -1170.
y=\frac{55}{4}
Divide both sides by -24.
7x+9\times \frac{55}{4}=234
Substitute \frac{55}{4} for y in 7x+9y=234. Because the resulting equation contains only one variable, you can solve for x directly.
7x+\frac{495}{4}=234
Multiply 9 times \frac{55}{4}.
7x=\frac{441}{4}
Subtract \frac{495}{4} from both sides of the equation.
x=\frac{63}{4}
Divide both sides by 7.
x=\frac{63}{4},y=\frac{55}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}