Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x+2y=10,23x+4y=26
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x+2y=10
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x=-2y+10
Subtract 2y from both sides of the equation.
x=\frac{1}{5}\left(-2y+10\right)
Divide both sides by 5.
x=-\frac{2}{5}y+2
Multiply \frac{1}{5} times -2y+10.
23\left(-\frac{2}{5}y+2\right)+4y=26
Substitute -\frac{2y}{5}+2 for x in the other equation, 23x+4y=26.
-\frac{46}{5}y+46+4y=26
Multiply 23 times -\frac{2y}{5}+2.
-\frac{26}{5}y+46=26
Add -\frac{46y}{5} to 4y.
-\frac{26}{5}y=-20
Subtract 46 from both sides of the equation.
y=\frac{50}{13}
Divide both sides of the equation by -\frac{26}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{2}{5}\times \frac{50}{13}+2
Substitute \frac{50}{13} for y in x=-\frac{2}{5}y+2. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{20}{13}+2
Multiply -\frac{2}{5} times \frac{50}{13} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{6}{13}
Add 2 to -\frac{20}{13}.
x=\frac{6}{13},y=\frac{50}{13}
The system is now solved.
5x+2y=10,23x+4y=26
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&2\\23&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\26\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&2\\23&4\end{matrix}\right))\left(\begin{matrix}5&2\\23&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\23&4\end{matrix}\right))\left(\begin{matrix}10\\26\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&2\\23&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\23&4\end{matrix}\right))\left(\begin{matrix}10\\26\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\23&4\end{matrix}\right))\left(\begin{matrix}10\\26\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5\times 4-2\times 23}&-\frac{2}{5\times 4-2\times 23}\\-\frac{23}{5\times 4-2\times 23}&\frac{5}{5\times 4-2\times 23}\end{matrix}\right)\left(\begin{matrix}10\\26\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{13}&\frac{1}{13}\\\frac{23}{26}&-\frac{5}{26}\end{matrix}\right)\left(\begin{matrix}10\\26\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{13}\times 10+\frac{1}{13}\times 26\\\frac{23}{26}\times 10-\frac{5}{26}\times 26\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{13}\\\frac{50}{13}\end{matrix}\right)
Do the arithmetic.
x=\frac{6}{13},y=\frac{50}{13}
Extract the matrix elements x and y.
5x+2y=10,23x+4y=26
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
23\times 5x+23\times 2y=23\times 10,5\times 23x+5\times 4y=5\times 26
To make 5x and 23x equal, multiply all terms on each side of the first equation by 23 and all terms on each side of the second by 5.
115x+46y=230,115x+20y=130
Simplify.
115x-115x+46y-20y=230-130
Subtract 115x+20y=130 from 115x+46y=230 by subtracting like terms on each side of the equal sign.
46y-20y=230-130
Add 115x to -115x. Terms 115x and -115x cancel out, leaving an equation with only one variable that can be solved.
26y=230-130
Add 46y to -20y.
26y=100
Add 230 to -130.
y=\frac{50}{13}
Divide both sides by 26.
23x+4\times \frac{50}{13}=26
Substitute \frac{50}{13} for y in 23x+4y=26. Because the resulting equation contains only one variable, you can solve for x directly.
23x+\frac{200}{13}=26
Multiply 4 times \frac{50}{13}.
23x=\frac{138}{13}
Subtract \frac{200}{13} from both sides of the equation.
x=\frac{6}{13}
Divide both sides by 23.
x=\frac{6}{13},y=\frac{50}{13}
The system is now solved.