\left. \begin{array} { l } { 5 \cdot 3 x ^ { 2 } + 4 x + 1 } \\ { 7 \cdot 2 x ^ { 2 } - 5 x + 2 } \\ { 9 \cdot 15 x ^ { 2 } + x - 6 } \end{array} \right.
Least Common Multiple
\frac{\left(14x^{2}-5x+2\right)\left(15x^{2}+4x+1\right)\left(\left(270x+1\right)^{2}-3241\right)}{540}
Evaluate
15x^{2}+4x+1,\ 14x^{2}-5x+2,\ 135x^{2}+x-6
Graph
Share
Copied to clipboard
135x^{2}+x-6=135\left(x-\left(-\frac{1}{270}\sqrt{3241}-\frac{1}{270}\right)\right)\left(x-\left(\frac{1}{270}\sqrt{3241}-\frac{1}{270}\right)\right)
Factor the expressions that are not already factored.
135\left(x-\frac{-\sqrt{3241}-1}{270}\right)\left(x-\frac{\sqrt{3241}-1}{270}\right)\left(14x^{2}-5x+2\right)\left(15x^{2}+4x+1\right)
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
28350x^{6}-2355x^{5}+1961x^{4}+543x^{3}+129x^{2}-16x-12
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}