Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

653x^{2}+332x+56-8x-16+96x^{2}+24x
Combine 432x^{2} and 221x^{2} to get 653x^{2}.
653x^{2}+324x+56-16+96x^{2}+24x
Combine 332x and -8x to get 324x.
653x^{2}+324x+40+96x^{2}+24x
Subtract 16 from 56 to get 40.
749x^{2}+324x+40+24x
Combine 653x^{2} and 96x^{2} to get 749x^{2}.
749x^{2}+348x+40
Combine 324x and 24x to get 348x.
factor(653x^{2}+332x+56-8x-16+96x^{2}+24x)
Combine 432x^{2} and 221x^{2} to get 653x^{2}.
factor(653x^{2}+324x+56-16+96x^{2}+24x)
Combine 332x and -8x to get 324x.
factor(653x^{2}+324x+40+96x^{2}+24x)
Subtract 16 from 56 to get 40.
factor(749x^{2}+324x+40+24x)
Combine 653x^{2} and 96x^{2} to get 749x^{2}.
factor(749x^{2}+348x+40)
Combine 324x and 24x to get 348x.
749x^{2}+348x+40=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-348±\sqrt{348^{2}-4\times 749\times 40}}{2\times 749}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-348±\sqrt{121104-4\times 749\times 40}}{2\times 749}
Square 348.
x=\frac{-348±\sqrt{121104-2996\times 40}}{2\times 749}
Multiply -4 times 749.
x=\frac{-348±\sqrt{121104-119840}}{2\times 749}
Multiply -2996 times 40.
x=\frac{-348±\sqrt{1264}}{2\times 749}
Add 121104 to -119840.
x=\frac{-348±4\sqrt{79}}{2\times 749}
Take the square root of 1264.
x=\frac{-348±4\sqrt{79}}{1498}
Multiply 2 times 749.
x=\frac{4\sqrt{79}-348}{1498}
Now solve the equation x=\frac{-348±4\sqrt{79}}{1498} when ± is plus. Add -348 to 4\sqrt{79}.
x=\frac{2\sqrt{79}-174}{749}
Divide -348+4\sqrt{79} by 1498.
x=\frac{-4\sqrt{79}-348}{1498}
Now solve the equation x=\frac{-348±4\sqrt{79}}{1498} when ± is minus. Subtract 4\sqrt{79} from -348.
x=\frac{-2\sqrt{79}-174}{749}
Divide -348-4\sqrt{79} by 1498.
749x^{2}+348x+40=749\left(x-\frac{2\sqrt{79}-174}{749}\right)\left(x-\frac{-2\sqrt{79}-174}{749}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-174+2\sqrt{79}}{749} for x_{1} and \frac{-174-2\sqrt{79}}{749} for x_{2}.