Solve for x, y
x=1750
y=2450
Graph
Share
Copied to clipboard
x+y=4200
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
x-y=-700
Consider the second equation. Subtract y from both sides.
x+y=4200,x-y=-700
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=4200
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+4200
Subtract y from both sides of the equation.
-y+4200-y=-700
Substitute -y+4200 for x in the other equation, x-y=-700.
-2y+4200=-700
Add -y to -y.
-2y=-4900
Subtract 4200 from both sides of the equation.
y=2450
Divide both sides by -2.
x=-2450+4200
Substitute 2450 for y in x=-y+4200. Because the resulting equation contains only one variable, you can solve for x directly.
x=1750
Add 4200 to -2450.
x=1750,y=2450
The system is now solved.
x+y=4200
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
x-y=-700
Consider the second equation. Subtract y from both sides.
x+y=4200,x-y=-700
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4200\\-700\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}4200\\-700\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}4200\\-700\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}4200\\-700\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}4200\\-700\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}4200\\-700\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 4200+\frac{1}{2}\left(-700\right)\\\frac{1}{2}\times 4200-\frac{1}{2}\left(-700\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1750\\2450\end{matrix}\right)
Do the arithmetic.
x=1750,y=2450
Extract the matrix elements x and y.
x+y=4200
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
x-y=-700
Consider the second equation. Subtract y from both sides.
x+y=4200,x-y=-700
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x-x+y+y=4200+700
Subtract x-y=-700 from x+y=4200 by subtracting like terms on each side of the equal sign.
y+y=4200+700
Add x to -x. Terms x and -x cancel out, leaving an equation with only one variable that can be solved.
2y=4200+700
Add y to y.
2y=4900
Add 4200 to 700.
y=2450
Divide both sides by 2.
x-2450=-700
Substitute 2450 for y in x-y=-700. Because the resulting equation contains only one variable, you can solve for x directly.
x=1750
Add 2450 to both sides of the equation.
x=1750,y=2450
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}