Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

z=x+y 3x+7y=10 4x-2y=6
Reorder the equations.
x=z-y
Solve z=x+y for x.
3\left(z-y\right)+7y=10 4\left(z-y\right)-2y=6
Substitute z-y for x in the second and third equation.
y=-\frac{3}{4}z+\frac{5}{2} z=\frac{3}{2}+\frac{3}{2}y
Solve these equations for y and z respectively.
z=\frac{3}{2}+\frac{3}{2}\left(-\frac{3}{4}z+\frac{5}{2}\right)
Substitute -\frac{3}{4}z+\frac{5}{2} for y in the equation z=\frac{3}{2}+\frac{3}{2}y.
z=\frac{42}{17}
Solve z=\frac{3}{2}+\frac{3}{2}\left(-\frac{3}{4}z+\frac{5}{2}\right) for z.
y=-\frac{3}{4}\times \frac{42}{17}+\frac{5}{2}
Substitute \frac{42}{17} for z in the equation y=-\frac{3}{4}z+\frac{5}{2}.
y=\frac{11}{17}
Calculate y from y=-\frac{3}{4}\times \frac{42}{17}+\frac{5}{2}.
x=\frac{42}{17}-\frac{11}{17}
Substitute \frac{11}{17} for y and \frac{42}{17} for z in the equation x=z-y.
x=\frac{31}{17}
Calculate x from x=\frac{42}{17}-\frac{11}{17}.
x=\frac{31}{17} y=\frac{11}{17} z=\frac{42}{17}
The system is now solved.