Solve for x, y, z
x = \frac{31}{17} = 1\frac{14}{17} \approx 1.823529412
y=\frac{11}{17}\approx 0.647058824
z = \frac{42}{17} = 2\frac{8}{17} \approx 2.470588235
Share
Copied to clipboard
z=x+y 3x+7y=10 4x-2y=6
Reorder the equations.
x=z-y
Solve z=x+y for x.
3\left(z-y\right)+7y=10 4\left(z-y\right)-2y=6
Substitute z-y for x in the second and third equation.
y=-\frac{3}{4}z+\frac{5}{2} z=\frac{3}{2}+\frac{3}{2}y
Solve these equations for y and z respectively.
z=\frac{3}{2}+\frac{3}{2}\left(-\frac{3}{4}z+\frac{5}{2}\right)
Substitute -\frac{3}{4}z+\frac{5}{2} for y in the equation z=\frac{3}{2}+\frac{3}{2}y.
z=\frac{42}{17}
Solve z=\frac{3}{2}+\frac{3}{2}\left(-\frac{3}{4}z+\frac{5}{2}\right) for z.
y=-\frac{3}{4}\times \frac{42}{17}+\frac{5}{2}
Substitute \frac{42}{17} for z in the equation y=-\frac{3}{4}z+\frac{5}{2}.
y=\frac{11}{17}
Calculate y from y=-\frac{3}{4}\times \frac{42}{17}+\frac{5}{2}.
x=\frac{42}{17}-\frac{11}{17}
Substitute \frac{11}{17} for y and \frac{42}{17} for z in the equation x=z-y.
x=\frac{31}{17}
Calculate x from x=\frac{42}{17}-\frac{11}{17}.
x=\frac{31}{17} y=\frac{11}{17} z=\frac{42}{17}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}