Solve for x, y
x=6\text{, }y=3
x=3\text{, }y=-1
Graph
Share
Copied to clipboard
4x-15-3y=0
Consider the first equation. Subtract 3y from both sides.
4x-3y=15
Add 15 to both sides. Anything plus zero gives itself.
4x-3y=15,-27y^{2}+8x^{2}=45
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x-3y=15
Solve 4x-3y=15 for x by isolating x on the left hand side of the equal sign.
4x=3y+15
Subtract -3y from both sides of the equation.
x=\frac{3}{4}y+\frac{15}{4}
Divide both sides by 4.
-27y^{2}+8\left(\frac{3}{4}y+\frac{15}{4}\right)^{2}=45
Substitute \frac{3}{4}y+\frac{15}{4} for x in the other equation, -27y^{2}+8x^{2}=45.
-27y^{2}+8\left(\frac{9}{16}y^{2}+\frac{45}{8}y+\frac{225}{16}\right)=45
Square \frac{3}{4}y+\frac{15}{4}.
-27y^{2}+\frac{9}{2}y^{2}+45y+\frac{225}{2}=45
Multiply 8 times \frac{9}{16}y^{2}+\frac{45}{8}y+\frac{225}{16}.
-\frac{45}{2}y^{2}+45y+\frac{225}{2}=45
Add -27y^{2} to \frac{9}{2}y^{2}.
-\frac{45}{2}y^{2}+45y+\frac{135}{2}=0
Subtract 45 from both sides of the equation.
y=\frac{-45±\sqrt{45^{2}-4\left(-\frac{45}{2}\right)\times \frac{135}{2}}}{2\left(-\frac{45}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -27+8\times \left(\frac{3}{4}\right)^{2} for a, 8\times \frac{15}{4}\times \frac{3}{4}\times 2 for b, and \frac{135}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-45±\sqrt{2025-4\left(-\frac{45}{2}\right)\times \frac{135}{2}}}{2\left(-\frac{45}{2}\right)}
Square 8\times \frac{15}{4}\times \frac{3}{4}\times 2.
y=\frac{-45±\sqrt{2025+90\times \frac{135}{2}}}{2\left(-\frac{45}{2}\right)}
Multiply -4 times -27+8\times \left(\frac{3}{4}\right)^{2}.
y=\frac{-45±\sqrt{2025+6075}}{2\left(-\frac{45}{2}\right)}
Multiply 90 times \frac{135}{2}.
y=\frac{-45±\sqrt{8100}}{2\left(-\frac{45}{2}\right)}
Add 2025 to 6075.
y=\frac{-45±90}{2\left(-\frac{45}{2}\right)}
Take the square root of 8100.
y=\frac{-45±90}{-45}
Multiply 2 times -27+8\times \left(\frac{3}{4}\right)^{2}.
y=\frac{45}{-45}
Now solve the equation y=\frac{-45±90}{-45} when ± is plus. Add -45 to 90.
y=-1
Divide 45 by -45.
y=-\frac{135}{-45}
Now solve the equation y=\frac{-45±90}{-45} when ± is minus. Subtract 90 from -45.
y=3
Divide -135 by -45.
x=\frac{3}{4}\left(-1\right)+\frac{15}{4}
There are two solutions for y: -1 and 3. Substitute -1 for y in the equation x=\frac{3}{4}y+\frac{15}{4} to find the corresponding solution for x that satisfies both equations.
x=\frac{-3+15}{4}
Multiply \frac{3}{4} times -1.
x=3
Add -\frac{3}{4} to \frac{15}{4}.
x=\frac{3}{4}\times 3+\frac{15}{4}
Now substitute 3 for y in the equation x=\frac{3}{4}y+\frac{15}{4} and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{9+15}{4}
Multiply \frac{3}{4} times 3.
x=6
Add \frac{3}{4}\times 3 to \frac{15}{4}.
x=3,y=-1\text{ or }x=6,y=3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}