Solve for x, y, z
x = \frac{131}{40} = 3\frac{11}{40} = 3.275
y = -\frac{39}{20} = -1\frac{19}{20} = -1.95
z=-\frac{9}{20}=-0.45
Share
Copied to clipboard
x=-\frac{5}{4}y-\frac{3}{4}z+\frac{1}{2}
Solve 4x+5y+3z=2 for x.
2\left(-\frac{5}{4}y-\frac{3}{4}z+\frac{1}{2}\right)+4y-5z=1 4\left(-\frac{5}{4}y-\frac{3}{4}z+\frac{1}{2}\right)+3y+5z=5
Substitute -\frac{5}{4}y-\frac{3}{4}z+\frac{1}{2} for x in the second and third equation.
y=\frac{13}{3}z z=\frac{3}{2}+y
Solve these equations for y and z respectively.
z=\frac{3}{2}+\frac{13}{3}z
Substitute \frac{13}{3}z for y in the equation z=\frac{3}{2}+y.
z=-\frac{9}{20}
Solve z=\frac{3}{2}+\frac{13}{3}z for z.
y=\frac{13}{3}\left(-\frac{9}{20}\right)
Substitute -\frac{9}{20} for z in the equation y=\frac{13}{3}z.
y=-\frac{39}{20}
Calculate y from y=\frac{13}{3}\left(-\frac{9}{20}\right).
x=-\frac{5}{4}\left(-\frac{39}{20}\right)-\frac{3}{4}\left(-\frac{9}{20}\right)+\frac{1}{2}
Substitute -\frac{39}{20} for y and -\frac{9}{20} for z in the equation x=-\frac{5}{4}y-\frac{3}{4}z+\frac{1}{2}.
x=\frac{131}{40}
Calculate x from x=-\frac{5}{4}\left(-\frac{39}{20}\right)-\frac{3}{4}\left(-\frac{9}{20}\right)+\frac{1}{2}.
x=\frac{131}{40} y=-\frac{39}{20} z=-\frac{9}{20}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}