Solve for x, y
x=20000
y=20000
Graph
Share
Copied to clipboard
4x+3y=140000,5x+4y=180000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x+3y=140000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
4x=-3y+140000
Subtract 3y from both sides of the equation.
x=\frac{1}{4}\left(-3y+140000\right)
Divide both sides by 4.
x=-\frac{3}{4}y+35000
Multiply \frac{1}{4} times -3y+140000.
5\left(-\frac{3}{4}y+35000\right)+4y=180000
Substitute -\frac{3y}{4}+35000 for x in the other equation, 5x+4y=180000.
-\frac{15}{4}y+175000+4y=180000
Multiply 5 times -\frac{3y}{4}+35000.
\frac{1}{4}y+175000=180000
Add -\frac{15y}{4} to 4y.
\frac{1}{4}y=5000
Subtract 175000 from both sides of the equation.
y=20000
Multiply both sides by 4.
x=-\frac{3}{4}\times 20000+35000
Substitute 20000 for y in x=-\frac{3}{4}y+35000. Because the resulting equation contains only one variable, you can solve for x directly.
x=-15000+35000
Multiply -\frac{3}{4} times 20000.
x=20000
Add 35000 to -15000.
x=20000,y=20000
The system is now solved.
4x+3y=140000,5x+4y=180000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&3\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}140000\\180000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&3\\5&4\end{matrix}\right))\left(\begin{matrix}4&3\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\5&4\end{matrix}\right))\left(\begin{matrix}140000\\180000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&3\\5&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\5&4\end{matrix}\right))\left(\begin{matrix}140000\\180000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\5&4\end{matrix}\right))\left(\begin{matrix}140000\\180000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4\times 4-3\times 5}&-\frac{3}{4\times 4-3\times 5}\\-\frac{5}{4\times 4-3\times 5}&\frac{4}{4\times 4-3\times 5}\end{matrix}\right)\left(\begin{matrix}140000\\180000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4&-3\\-5&4\end{matrix}\right)\left(\begin{matrix}140000\\180000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\times 140000-3\times 180000\\-5\times 140000+4\times 180000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20000\\20000\end{matrix}\right)
Do the arithmetic.
x=20000,y=20000
Extract the matrix elements x and y.
4x+3y=140000,5x+4y=180000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5\times 4x+5\times 3y=5\times 140000,4\times 5x+4\times 4y=4\times 180000
To make 4x and 5x equal, multiply all terms on each side of the first equation by 5 and all terms on each side of the second by 4.
20x+15y=700000,20x+16y=720000
Simplify.
20x-20x+15y-16y=700000-720000
Subtract 20x+16y=720000 from 20x+15y=700000 by subtracting like terms on each side of the equal sign.
15y-16y=700000-720000
Add 20x to -20x. Terms 20x and -20x cancel out, leaving an equation with only one variable that can be solved.
-y=700000-720000
Add 15y to -16y.
-y=-20000
Add 700000 to -720000.
y=20000
Divide both sides by -1.
5x+4\times 20000=180000
Substitute 20000 for y in 5x+4y=180000. Because the resulting equation contains only one variable, you can solve for x directly.
5x+80000=180000
Multiply 4 times 20000.
5x=100000
Subtract 80000 from both sides of the equation.
x=20000
Divide both sides by 5.
x=20000,y=20000
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}