Solve for x, y
x=\frac{4\sqrt{19}+8}{5}\approx 5.087119155\text{, }y=\frac{4-8\sqrt{19}}{5}\approx -6.17423831
x=\frac{8-4\sqrt{19}}{5}\approx -1.887119155\text{, }y=\frac{8\sqrt{19}+4}{5}\approx 7.77423831
Graph
Share
Copied to clipboard
4x+2y=8,y^{2}+x^{2}=64
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x+2y=8
Solve 4x+2y=8 for x by isolating x on the left hand side of the equal sign.
4x=-2y+8
Subtract 2y from both sides of the equation.
x=-\frac{1}{2}y+2
Divide both sides by 4.
y^{2}+\left(-\frac{1}{2}y+2\right)^{2}=64
Substitute -\frac{1}{2}y+2 for x in the other equation, y^{2}+x^{2}=64.
y^{2}+\frac{1}{4}y^{2}-2y+4=64
Square -\frac{1}{2}y+2.
\frac{5}{4}y^{2}-2y+4=64
Add y^{2} to \frac{1}{4}y^{2}.
\frac{5}{4}y^{2}-2y-60=0
Subtract 64 from both sides of the equation.
y=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times \frac{5}{4}\left(-60\right)}}{2\times \frac{5}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-\frac{1}{2}\right)^{2} for a, 1\times 2\left(-\frac{1}{2}\right)\times 2 for b, and -60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-2\right)±\sqrt{4-4\times \frac{5}{4}\left(-60\right)}}{2\times \frac{5}{4}}
Square 1\times 2\left(-\frac{1}{2}\right)\times 2.
y=\frac{-\left(-2\right)±\sqrt{4-5\left(-60\right)}}{2\times \frac{5}{4}}
Multiply -4 times 1+1\left(-\frac{1}{2}\right)^{2}.
y=\frac{-\left(-2\right)±\sqrt{4+300}}{2\times \frac{5}{4}}
Multiply -5 times -60.
y=\frac{-\left(-2\right)±\sqrt{304}}{2\times \frac{5}{4}}
Add 4 to 300.
y=\frac{-\left(-2\right)±4\sqrt{19}}{2\times \frac{5}{4}}
Take the square root of 304.
y=\frac{2±4\sqrt{19}}{2\times \frac{5}{4}}
The opposite of 1\times 2\left(-\frac{1}{2}\right)\times 2 is 2.
y=\frac{2±4\sqrt{19}}{\frac{5}{2}}
Multiply 2 times 1+1\left(-\frac{1}{2}\right)^{2}.
y=\frac{4\sqrt{19}+2}{\frac{5}{2}}
Now solve the equation y=\frac{2±4\sqrt{19}}{\frac{5}{2}} when ± is plus. Add 2 to 4\sqrt{19}.
y=\frac{8\sqrt{19}+4}{5}
Divide 2+4\sqrt{19} by \frac{5}{2} by multiplying 2+4\sqrt{19} by the reciprocal of \frac{5}{2}.
y=\frac{2-4\sqrt{19}}{\frac{5}{2}}
Now solve the equation y=\frac{2±4\sqrt{19}}{\frac{5}{2}} when ± is minus. Subtract 4\sqrt{19} from 2.
y=\frac{4-8\sqrt{19}}{5}
Divide 2-4\sqrt{19} by \frac{5}{2} by multiplying 2-4\sqrt{19} by the reciprocal of \frac{5}{2}.
x=-\frac{1}{2}\times \frac{8\sqrt{19}+4}{5}+2
There are two solutions for y: \frac{4+8\sqrt{19}}{5} and \frac{4-8\sqrt{19}}{5}. Substitute \frac{4+8\sqrt{19}}{5} for y in the equation x=-\frac{1}{2}y+2 to find the corresponding solution for x that satisfies both equations.
x=-\frac{8\sqrt{19}+4}{2\times 5}+2
Multiply -\frac{1}{2} times \frac{4+8\sqrt{19}}{5}.
x=-\frac{1}{2}\times \frac{4-8\sqrt{19}}{5}+2
Now substitute \frac{4-8\sqrt{19}}{5} for y in the equation x=-\frac{1}{2}y+2 and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{4-8\sqrt{19}}{2\times 5}+2
Multiply -\frac{1}{2} times \frac{4-8\sqrt{19}}{5}.
x=-\frac{8\sqrt{19}+4}{2\times 5}+2,y=\frac{8\sqrt{19}+4}{5}\text{ or }x=-\frac{4-8\sqrt{19}}{2\times 5}+2,y=\frac{4-8\sqrt{19}}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}