Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x+2y=8,y^{2}+x^{2}=64
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x+2y=8
Solve 4x+2y=8 for x by isolating x on the left hand side of the equal sign.
4x=-2y+8
Subtract 2y from both sides of the equation.
x=-\frac{1}{2}y+2
Divide both sides by 4.
y^{2}+\left(-\frac{1}{2}y+2\right)^{2}=64
Substitute -\frac{1}{2}y+2 for x in the other equation, y^{2}+x^{2}=64.
y^{2}+\frac{1}{4}y^{2}-2y+4=64
Square -\frac{1}{2}y+2.
\frac{5}{4}y^{2}-2y+4=64
Add y^{2} to \frac{1}{4}y^{2}.
\frac{5}{4}y^{2}-2y-60=0
Subtract 64 from both sides of the equation.
y=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times \frac{5}{4}\left(-60\right)}}{2\times \frac{5}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-\frac{1}{2}\right)^{2} for a, 1\times 2\left(-\frac{1}{2}\right)\times 2 for b, and -60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-2\right)±\sqrt{4-4\times \frac{5}{4}\left(-60\right)}}{2\times \frac{5}{4}}
Square 1\times 2\left(-\frac{1}{2}\right)\times 2.
y=\frac{-\left(-2\right)±\sqrt{4-5\left(-60\right)}}{2\times \frac{5}{4}}
Multiply -4 times 1+1\left(-\frac{1}{2}\right)^{2}.
y=\frac{-\left(-2\right)±\sqrt{4+300}}{2\times \frac{5}{4}}
Multiply -5 times -60.
y=\frac{-\left(-2\right)±\sqrt{304}}{2\times \frac{5}{4}}
Add 4 to 300.
y=\frac{-\left(-2\right)±4\sqrt{19}}{2\times \frac{5}{4}}
Take the square root of 304.
y=\frac{2±4\sqrt{19}}{2\times \frac{5}{4}}
The opposite of 1\times 2\left(-\frac{1}{2}\right)\times 2 is 2.
y=\frac{2±4\sqrt{19}}{\frac{5}{2}}
Multiply 2 times 1+1\left(-\frac{1}{2}\right)^{2}.
y=\frac{4\sqrt{19}+2}{\frac{5}{2}}
Now solve the equation y=\frac{2±4\sqrt{19}}{\frac{5}{2}} when ± is plus. Add 2 to 4\sqrt{19}.
y=\frac{8\sqrt{19}+4}{5}
Divide 2+4\sqrt{19} by \frac{5}{2} by multiplying 2+4\sqrt{19} by the reciprocal of \frac{5}{2}.
y=\frac{2-4\sqrt{19}}{\frac{5}{2}}
Now solve the equation y=\frac{2±4\sqrt{19}}{\frac{5}{2}} when ± is minus. Subtract 4\sqrt{19} from 2.
y=\frac{4-8\sqrt{19}}{5}
Divide 2-4\sqrt{19} by \frac{5}{2} by multiplying 2-4\sqrt{19} by the reciprocal of \frac{5}{2}.
x=-\frac{1}{2}\times \frac{8\sqrt{19}+4}{5}+2
There are two solutions for y: \frac{4+8\sqrt{19}}{5} and \frac{4-8\sqrt{19}}{5}. Substitute \frac{4+8\sqrt{19}}{5} for y in the equation x=-\frac{1}{2}y+2 to find the corresponding solution for x that satisfies both equations.
x=-\frac{8\sqrt{19}+4}{2\times 5}+2
Multiply -\frac{1}{2} times \frac{4+8\sqrt{19}}{5}.
x=-\frac{1}{2}\times \frac{4-8\sqrt{19}}{5}+2
Now substitute \frac{4-8\sqrt{19}}{5} for y in the equation x=-\frac{1}{2}y+2 and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{4-8\sqrt{19}}{2\times 5}+2
Multiply -\frac{1}{2} times \frac{4-8\sqrt{19}}{5}.
x=-\frac{8\sqrt{19}+4}{2\times 5}+2,y=\frac{8\sqrt{19}+4}{5}\text{ or }x=-\frac{4-8\sqrt{19}}{2\times 5}+2,y=\frac{4-8\sqrt{19}}{5}
The system is now solved.