Solve for a, h
a = \frac{410}{3} = 136\frac{2}{3} \approx 136.666666667
h = \frac{20}{3} = 6\frac{2}{3} \approx 6.666666667
Share
Copied to clipboard
4a+2h=560,9a+6h=1270
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4a+2h=560
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
4a=-2h+560
Subtract 2h from both sides of the equation.
a=\frac{1}{4}\left(-2h+560\right)
Divide both sides by 4.
a=-\frac{1}{2}h+140
Multiply \frac{1}{4} times -2h+560.
9\left(-\frac{1}{2}h+140\right)+6h=1270
Substitute -\frac{h}{2}+140 for a in the other equation, 9a+6h=1270.
-\frac{9}{2}h+1260+6h=1270
Multiply 9 times -\frac{h}{2}+140.
\frac{3}{2}h+1260=1270
Add -\frac{9h}{2} to 6h.
\frac{3}{2}h=10
Subtract 1260 from both sides of the equation.
h=\frac{20}{3}
Divide both sides of the equation by \frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=-\frac{1}{2}\times \frac{20}{3}+140
Substitute \frac{20}{3} for h in a=-\frac{1}{2}h+140. Because the resulting equation contains only one variable, you can solve for a directly.
a=-\frac{10}{3}+140
Multiply -\frac{1}{2} times \frac{20}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
a=\frac{410}{3}
Add 140 to -\frac{10}{3}.
a=\frac{410}{3},h=\frac{20}{3}
The system is now solved.
4a+2h=560,9a+6h=1270
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&2\\9&6\end{matrix}\right)\left(\begin{matrix}a\\h\end{matrix}\right)=\left(\begin{matrix}560\\1270\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&2\\9&6\end{matrix}\right))\left(\begin{matrix}4&2\\9&6\end{matrix}\right)\left(\begin{matrix}a\\h\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\9&6\end{matrix}\right))\left(\begin{matrix}560\\1270\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&2\\9&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\h\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\9&6\end{matrix}\right))\left(\begin{matrix}560\\1270\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\h\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\9&6\end{matrix}\right))\left(\begin{matrix}560\\1270\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\h\end{matrix}\right)=\left(\begin{matrix}\frac{6}{4\times 6-2\times 9}&-\frac{2}{4\times 6-2\times 9}\\-\frac{9}{4\times 6-2\times 9}&\frac{4}{4\times 6-2\times 9}\end{matrix}\right)\left(\begin{matrix}560\\1270\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\h\end{matrix}\right)=\left(\begin{matrix}1&-\frac{1}{3}\\-\frac{3}{2}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}560\\1270\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\h\end{matrix}\right)=\left(\begin{matrix}560-\frac{1}{3}\times 1270\\-\frac{3}{2}\times 560+\frac{2}{3}\times 1270\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\h\end{matrix}\right)=\left(\begin{matrix}\frac{410}{3}\\\frac{20}{3}\end{matrix}\right)
Do the arithmetic.
a=\frac{410}{3},h=\frac{20}{3}
Extract the matrix elements a and h.
4a+2h=560,9a+6h=1270
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
9\times 4a+9\times 2h=9\times 560,4\times 9a+4\times 6h=4\times 1270
To make 4a and 9a equal, multiply all terms on each side of the first equation by 9 and all terms on each side of the second by 4.
36a+18h=5040,36a+24h=5080
Simplify.
36a-36a+18h-24h=5040-5080
Subtract 36a+24h=5080 from 36a+18h=5040 by subtracting like terms on each side of the equal sign.
18h-24h=5040-5080
Add 36a to -36a. Terms 36a and -36a cancel out, leaving an equation with only one variable that can be solved.
-6h=5040-5080
Add 18h to -24h.
-6h=-40
Add 5040 to -5080.
h=\frac{20}{3}
Divide both sides by -6.
9a+6\times \frac{20}{3}=1270
Substitute \frac{20}{3} for h in 9a+6h=1270. Because the resulting equation contains only one variable, you can solve for a directly.
9a+40=1270
Multiply 6 times \frac{20}{3}.
9a=1230
Subtract 40 from both sides of the equation.
a=\frac{410}{3}
Divide both sides by 9.
a=\frac{410}{3},h=\frac{20}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}