Solve for y, z
y=-3
z=3
Share
Copied to clipboard
-20y-20z-8-5y+4z=19
Consider the first equation. Use the distributive property to multiply 4 by -5y-5z-2.
-25y-20z-8+4z=19
Combine -20y and -5y to get -25y.
-25y-16z-8=19
Combine -20z and 4z to get -16z.
-25y-16z=19+8
Add 8 to both sides.
-25y-16z=27
Add 19 and 8 to get 27.
-5z-2-z=-20
Consider the second equation. Combine -5y and 5y to get 0.
-6z-2=-20
Combine -5z and -z to get -6z.
-6z=-20+2
Add 2 to both sides.
-6z=-18
Add -20 and 2 to get -18.
z=\frac{-18}{-6}
Divide both sides by -6.
z=3
Divide -18 by -6 to get 3.
-25y-16\times 3=27
Consider the first equation. Insert the known values of variables into the equation.
-25y-48=27
Multiply -16 and 3 to get -48.
-25y=27+48
Add 48 to both sides.
-25y=75
Add 27 and 48 to get 75.
y=\frac{75}{-25}
Divide both sides by -25.
y=-3
Divide 75 by -25 to get -3.
y=-3 z=3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}