Solve for D, E, F
D=\frac{1}{2}=0.5
E = \frac{3}{2} = 1\frac{1}{2} = 1.5
F = -\frac{15}{2} = -7\frac{1}{2} = -7.5
Share
Copied to clipboard
E=-5-2D-F
Solve 4+1+2D+E+F=0 for E.
4+9-2D-3\left(-5-2D-F\right)+F=0 1+4-D+2\left(-5-2D-F\right)+F=0
Substitute -5-2D-F for E in the second and third equation.
D=-7-F F=-5-5D
Solve these equations for D and F respectively.
F=-5-5\left(-7-F\right)
Substitute -7-F for D in the equation F=-5-5D.
F=-\frac{15}{2}
Solve F=-5-5\left(-7-F\right) for F.
D=-7-\left(-\frac{15}{2}\right)
Substitute -\frac{15}{2} for F in the equation D=-7-F.
D=\frac{1}{2}
Calculate D from D=-7-\left(-\frac{15}{2}\right).
E=-5-2\times \frac{1}{2}-\left(-\frac{15}{2}\right)
Substitute \frac{1}{2} for D and -\frac{15}{2} for F in the equation E=-5-2D-F.
E=\frac{3}{2}
Calculate E from E=-5-2\times \frac{1}{2}-\left(-\frac{15}{2}\right).
D=\frac{1}{2} E=\frac{3}{2} F=-\frac{15}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}