Evaluate
-\frac{4000\sqrt{39}}{13}+3500\approx 1578.462154339
Factor
\frac{500 {(91 - 8 \sqrt{39})}}{13} = 1578.4621543389544
Share
Copied to clipboard
3500-2\times 10\times 40\sqrt{2}\sqrt{3}\times \frac{5\sqrt{26}}{26}
Add 3200 and 300 to get 3500.
3500-20\times 40\sqrt{2}\sqrt{3}\times \frac{5\sqrt{26}}{26}
Multiply 2 and 10 to get 20.
3500-800\sqrt{2}\sqrt{3}\times \frac{5\sqrt{26}}{26}
Multiply 20 and 40 to get 800.
3500-\frac{800\times 5\sqrt{26}}{26}\sqrt{2}\sqrt{3}
Express 800\times \frac{5\sqrt{26}}{26} as a single fraction.
3500-\frac{800\times 5\sqrt{26}}{26}\sqrt{6}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
3500-\frac{4000\sqrt{26}}{26}\sqrt{6}
Multiply 800 and 5 to get 4000.
3500-\frac{2000}{13}\sqrt{26}\sqrt{6}
Divide 4000\sqrt{26} by 26 to get \frac{2000}{13}\sqrt{26}.
3500-\frac{2000}{13}\sqrt{156}
To multiply \sqrt{26} and \sqrt{6}, multiply the numbers under the square root.
3500-\frac{2000}{13}\times 2\sqrt{39}
Factor 156=2^{2}\times 39. Rewrite the square root of the product \sqrt{2^{2}\times 39} as the product of square roots \sqrt{2^{2}}\sqrt{39}. Take the square root of 2^{2}.
3500+\frac{-2000\times 2}{13}\sqrt{39}
Express -\frac{2000}{13}\times 2 as a single fraction.
3500+\frac{-4000}{13}\sqrt{39}
Multiply -2000 and 2 to get -4000.
3500-\frac{4000}{13}\sqrt{39}
Fraction \frac{-4000}{13} can be rewritten as -\frac{4000}{13} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}