Solve for x, y
x=300000
y=100000
Graph
Share
Copied to clipboard
32x+50y=14600000,10x+40y=7000000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
32x+50y=14600000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
32x=-50y+14600000
Subtract 50y from both sides of the equation.
x=\frac{1}{32}\left(-50y+14600000\right)
Divide both sides by 32.
x=-\frac{25}{16}y+456250
Multiply \frac{1}{32} times -50y+14600000.
10\left(-\frac{25}{16}y+456250\right)+40y=7000000
Substitute -\frac{25y}{16}+456250 for x in the other equation, 10x+40y=7000000.
-\frac{125}{8}y+4562500+40y=7000000
Multiply 10 times -\frac{25y}{16}+456250.
\frac{195}{8}y+4562500=7000000
Add -\frac{125y}{8} to 40y.
\frac{195}{8}y=2437500
Subtract 4562500 from both sides of the equation.
y=100000
Divide both sides of the equation by \frac{195}{8}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{25}{16}\times 100000+456250
Substitute 100000 for y in x=-\frac{25}{16}y+456250. Because the resulting equation contains only one variable, you can solve for x directly.
x=-156250+456250
Multiply -\frac{25}{16} times 100000.
x=300000
Add 456250 to -156250.
x=300000,y=100000
The system is now solved.
32x+50y=14600000,10x+40y=7000000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}32&50\\10&40\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14600000\\7000000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}32&50\\10&40\end{matrix}\right))\left(\begin{matrix}32&50\\10&40\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}32&50\\10&40\end{matrix}\right))\left(\begin{matrix}14600000\\7000000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}32&50\\10&40\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}32&50\\10&40\end{matrix}\right))\left(\begin{matrix}14600000\\7000000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}32&50\\10&40\end{matrix}\right))\left(\begin{matrix}14600000\\7000000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{40}{32\times 40-50\times 10}&-\frac{50}{32\times 40-50\times 10}\\-\frac{10}{32\times 40-50\times 10}&\frac{32}{32\times 40-50\times 10}\end{matrix}\right)\left(\begin{matrix}14600000\\7000000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{39}&-\frac{5}{78}\\-\frac{1}{78}&\frac{8}{195}\end{matrix}\right)\left(\begin{matrix}14600000\\7000000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{39}\times 14600000-\frac{5}{78}\times 7000000\\-\frac{1}{78}\times 14600000+\frac{8}{195}\times 7000000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}300000\\100000\end{matrix}\right)
Do the arithmetic.
x=300000,y=100000
Extract the matrix elements x and y.
32x+50y=14600000,10x+40y=7000000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10\times 32x+10\times 50y=10\times 14600000,32\times 10x+32\times 40y=32\times 7000000
To make 32x and 10x equal, multiply all terms on each side of the first equation by 10 and all terms on each side of the second by 32.
320x+500y=146000000,320x+1280y=224000000
Simplify.
320x-320x+500y-1280y=146000000-224000000
Subtract 320x+1280y=224000000 from 320x+500y=146000000 by subtracting like terms on each side of the equal sign.
500y-1280y=146000000-224000000
Add 320x to -320x. Terms 320x and -320x cancel out, leaving an equation with only one variable that can be solved.
-780y=146000000-224000000
Add 500y to -1280y.
-780y=-78000000
Add 146000000 to -224000000.
y=100000
Divide both sides by -780.
10x+40\times 100000=7000000
Substitute 100000 for y in 10x+40y=7000000. Because the resulting equation contains only one variable, you can solve for x directly.
10x+4000000=7000000
Multiply 40 times 100000.
10x=3000000
Subtract 4000000 from both sides of the equation.
x=300000
Divide both sides by 10.
x=300000,y=100000
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}