Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

25x+y=30
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
55x+y=120
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
25x+y=30,55x+y=120
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
25x+y=30
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
25x=-y+30
Subtract y from both sides of the equation.
x=\frac{1}{25}\left(-y+30\right)
Divide both sides by 25.
x=-\frac{1}{25}y+\frac{6}{5}
Multiply \frac{1}{25} times -y+30.
55\left(-\frac{1}{25}y+\frac{6}{5}\right)+y=120
Substitute -\frac{y}{25}+\frac{6}{5} for x in the other equation, 55x+y=120.
-\frac{11}{5}y+66+y=120
Multiply 55 times -\frac{y}{25}+\frac{6}{5}.
-\frac{6}{5}y+66=120
Add -\frac{11y}{5} to y.
-\frac{6}{5}y=54
Subtract 66 from both sides of the equation.
y=-45
Divide both sides of the equation by -\frac{6}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{1}{25}\left(-45\right)+\frac{6}{5}
Substitute -45 for y in x=-\frac{1}{25}y+\frac{6}{5}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{9+6}{5}
Multiply -\frac{1}{25} times -45.
x=3
Add \frac{6}{5} to \frac{9}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=3,y=-45
The system is now solved.
25x+y=30
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
55x+y=120
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
25x+y=30,55x+y=120
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}25&1\\55&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\120\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}25&1\\55&1\end{matrix}\right))\left(\begin{matrix}25&1\\55&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}25&1\\55&1\end{matrix}\right))\left(\begin{matrix}30\\120\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}25&1\\55&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}25&1\\55&1\end{matrix}\right))\left(\begin{matrix}30\\120\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}25&1\\55&1\end{matrix}\right))\left(\begin{matrix}30\\120\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{25-55}&-\frac{1}{25-55}\\-\frac{55}{25-55}&\frac{25}{25-55}\end{matrix}\right)\left(\begin{matrix}30\\120\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{30}&\frac{1}{30}\\\frac{11}{6}&-\frac{5}{6}\end{matrix}\right)\left(\begin{matrix}30\\120\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{30}\times 30+\frac{1}{30}\times 120\\\frac{11}{6}\times 30-\frac{5}{6}\times 120\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-45\end{matrix}\right)
Do the arithmetic.
x=3,y=-45
Extract the matrix elements x and y.
25x+y=30
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
55x+y=120
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
25x+y=30,55x+y=120
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
25x-55x+y-y=30-120
Subtract 55x+y=120 from 25x+y=30 by subtracting like terms on each side of the equal sign.
25x-55x=30-120
Add y to -y. Terms y and -y cancel out, leaving an equation with only one variable that can be solved.
-30x=30-120
Add 25x to -55x.
-30x=-90
Add 30 to -120.
x=3
Divide both sides by -30.
55\times 3+y=120
Substitute 3 for x in 55x+y=120. Because the resulting equation contains only one variable, you can solve for y directly.
165+y=120
Multiply 55 times 3.
y=-45
Subtract 165 from both sides of the equation.
x=3,y=-45
The system is now solved.