Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

2x_{1}+4x_{2}+x_{3}=10 3x_{1}+2x_{2}+4x_{3}=-3 x_{1}+x_{2}-x_{3}=9
Reorder the equations.
x_{3}=10-2x_{1}-4x_{2}
Solve 2x_{1}+4x_{2}+x_{3}=10 for x_{3}.
3x_{1}+2x_{2}+4\left(10-2x_{1}-4x_{2}\right)=-3 x_{1}+x_{2}-\left(10-2x_{1}-4x_{2}\right)=9
Substitute 10-2x_{1}-4x_{2} for x_{3} in the second and third equation.
x_{2}=-\frac{5}{14}x_{1}+\frac{43}{14} x_{1}=-\frac{5}{3}x_{2}+\frac{19}{3}
Solve these equations for x_{2} and x_{1} respectively.
x_{1}=-\frac{5}{3}\left(-\frac{5}{14}x_{1}+\frac{43}{14}\right)+\frac{19}{3}
Substitute -\frac{5}{14}x_{1}+\frac{43}{14} for x_{2} in the equation x_{1}=-\frac{5}{3}x_{2}+\frac{19}{3}.
x_{1}=3
Solve x_{1}=-\frac{5}{3}\left(-\frac{5}{14}x_{1}+\frac{43}{14}\right)+\frac{19}{3} for x_{1}.
x_{2}=-\frac{5}{14}\times 3+\frac{43}{14}
Substitute 3 for x_{1} in the equation x_{2}=-\frac{5}{14}x_{1}+\frac{43}{14}.
x_{2}=2
Calculate x_{2} from x_{2}=-\frac{5}{14}\times 3+\frac{43}{14}.
x_{3}=10-2\times 3-4\times 2
Substitute 2 for x_{2} and 3 for x_{1} in the equation x_{3}=10-2x_{1}-4x_{2}.
x_{3}=-4
Calculate x_{3} from x_{3}=10-2\times 3-4\times 2.
x_{1}=3 x_{2}=2 x_{3}=-4
The system is now solved.