Solve for x, y
x=-\frac{55}{73}\approx -0.753424658
y = \frac{319}{292} = 1\frac{27}{292} \approx 1.092465753
Graph
Share
Copied to clipboard
3x-8y=-11,32x+12y=-11
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x-8y=-11
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=8y-11
Add 8y to both sides of the equation.
x=\frac{1}{3}\left(8y-11\right)
Divide both sides by 3.
x=\frac{8}{3}y-\frac{11}{3}
Multiply \frac{1}{3} times 8y-11.
32\left(\frac{8}{3}y-\frac{11}{3}\right)+12y=-11
Substitute \frac{8y-11}{3} for x in the other equation, 32x+12y=-11.
\frac{256}{3}y-\frac{352}{3}+12y=-11
Multiply 32 times \frac{8y-11}{3}.
\frac{292}{3}y-\frac{352}{3}=-11
Add \frac{256y}{3} to 12y.
\frac{292}{3}y=\frac{319}{3}
Add \frac{352}{3} to both sides of the equation.
y=\frac{319}{292}
Divide both sides of the equation by \frac{292}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{8}{3}\times \frac{319}{292}-\frac{11}{3}
Substitute \frac{319}{292} for y in x=\frac{8}{3}y-\frac{11}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{638}{219}-\frac{11}{3}
Multiply \frac{8}{3} times \frac{319}{292} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=-\frac{55}{73}
Add -\frac{11}{3} to \frac{638}{219} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{55}{73},y=\frac{319}{292}
The system is now solved.
3x-8y=-11,32x+12y=-11
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&-8\\32&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-11\\-11\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&-8\\32&12\end{matrix}\right))\left(\begin{matrix}3&-8\\32&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-8\\32&12\end{matrix}\right))\left(\begin{matrix}-11\\-11\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&-8\\32&12\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-8\\32&12\end{matrix}\right))\left(\begin{matrix}-11\\-11\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-8\\32&12\end{matrix}\right))\left(\begin{matrix}-11\\-11\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{3\times 12-\left(-8\times 32\right)}&-\frac{-8}{3\times 12-\left(-8\times 32\right)}\\-\frac{32}{3\times 12-\left(-8\times 32\right)}&\frac{3}{3\times 12-\left(-8\times 32\right)}\end{matrix}\right)\left(\begin{matrix}-11\\-11\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{73}&\frac{2}{73}\\-\frac{8}{73}&\frac{3}{292}\end{matrix}\right)\left(\begin{matrix}-11\\-11\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{73}\left(-11\right)+\frac{2}{73}\left(-11\right)\\-\frac{8}{73}\left(-11\right)+\frac{3}{292}\left(-11\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{55}{73}\\\frac{319}{292}\end{matrix}\right)
Do the arithmetic.
x=-\frac{55}{73},y=\frac{319}{292}
Extract the matrix elements x and y.
3x-8y=-11,32x+12y=-11
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
32\times 3x+32\left(-8\right)y=32\left(-11\right),3\times 32x+3\times 12y=3\left(-11\right)
To make 3x and 32x equal, multiply all terms on each side of the first equation by 32 and all terms on each side of the second by 3.
96x-256y=-352,96x+36y=-33
Simplify.
96x-96x-256y-36y=-352+33
Subtract 96x+36y=-33 from 96x-256y=-352 by subtracting like terms on each side of the equal sign.
-256y-36y=-352+33
Add 96x to -96x. Terms 96x and -96x cancel out, leaving an equation with only one variable that can be solved.
-292y=-352+33
Add -256y to -36y.
-292y=-319
Add -352 to 33.
y=\frac{319}{292}
Divide both sides by -292.
32x+12\times \frac{319}{292}=-11
Substitute \frac{319}{292} for y in 32x+12y=-11. Because the resulting equation contains only one variable, you can solve for x directly.
32x+\frac{957}{73}=-11
Multiply 12 times \frac{319}{292}.
32x=-\frac{1760}{73}
Subtract \frac{957}{73} from both sides of the equation.
x=-\frac{55}{73}
Divide both sides by 32.
x=-\frac{55}{73},y=\frac{319}{292}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}