Solve for x, y
x = \frac{13}{3} = 4\frac{1}{3} \approx 4.333333333
y = \frac{31}{9} = 3\frac{4}{9} \approx 3.444444444
Graph
Share
Copied to clipboard
3x=7+6
Consider the first equation. Add 6 to both sides.
3x=13
Add 7 and 6 to get 13.
x=\frac{13}{3}
Divide both sides by 3.
3y-6=\frac{13}{3}
Consider the second equation. Insert the known values of variables into the equation.
3y=\frac{13}{3}+6
Add 6 to both sides.
3y=\frac{31}{3}
Add \frac{13}{3} and 6 to get \frac{31}{3}.
y=\frac{\frac{31}{3}}{3}
Divide both sides by 3.
y=\frac{31}{3\times 3}
Express \frac{\frac{31}{3}}{3} as a single fraction.
y=\frac{31}{9}
Multiply 3 and 3 to get 9.
x=\frac{13}{3} y=\frac{31}{9}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}