Solve for x, y
x = -\frac{13}{4} = -3\frac{1}{4} = -3.25
y = -\frac{159}{8} = -19\frac{7}{8} = -19.875
Graph
Share
Copied to clipboard
4x=7-20
Consider the second equation. Subtract 20 from both sides.
4x=-13
Subtract 20 from 7 to get -13.
x=-\frac{13}{4}
Divide both sides by 4.
3\left(-\frac{13}{4}\right)-2y=30
Consider the first equation. Insert the known values of variables into the equation.
-\frac{39}{4}-2y=30
Multiply 3 and -\frac{13}{4} to get -\frac{39}{4}.
-2y=30+\frac{39}{4}
Add \frac{39}{4} to both sides.
-2y=\frac{159}{4}
Add 30 and \frac{39}{4} to get \frac{159}{4}.
y=\frac{\frac{159}{4}}{-2}
Divide both sides by -2.
y=\frac{159}{4\left(-2\right)}
Express \frac{\frac{159}{4}}{-2} as a single fraction.
y=\frac{159}{-8}
Multiply 4 and -2 to get -8.
y=-\frac{159}{8}
Fraction \frac{159}{-8} can be rewritten as -\frac{159}{8} by extracting the negative sign.
x=-\frac{13}{4} y=-\frac{159}{8}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}