Solve for x, y
x = \frac{7}{4} = 1\frac{3}{4} = 1.75
y = -\frac{21}{4} = -5\frac{1}{4} = -5.25
Graph
Share
Copied to clipboard
x=\frac{7}{4}
Consider the second equation. Divide both sides by 4.
3\times \frac{7}{4}+y=0
Consider the first equation. Insert the known values of variables into the equation.
\frac{21}{4}+y=0
Multiply 3 and \frac{7}{4} to get \frac{21}{4}.
y=-\frac{21}{4}
Subtract \frac{21}{4} from both sides. Anything subtracted from zero gives its negation.
x=\frac{7}{4} y=-\frac{21}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}