Solve for x, y, z
x=2
y=1
z=3
Share
Copied to clipboard
y=-3x-z+10
Solve 3x+y+z=10 for y.
x-3x-z+10-z=0 5x-9\left(-3x-z+10\right)=1
Substitute -3x-z+10 for y in the second and third equation.
x=5-z z=\frac{91}{9}-\frac{32}{9}x
Solve these equations for x and z respectively.
z=\frac{91}{9}-\frac{32}{9}\left(5-z\right)
Substitute 5-z for x in the equation z=\frac{91}{9}-\frac{32}{9}x.
z=3
Solve z=\frac{91}{9}-\frac{32}{9}\left(5-z\right) for z.
x=5-3
Substitute 3 for z in the equation x=5-z.
x=2
Calculate x from x=5-3.
y=-3\times 2-3+10
Substitute 2 for x and 3 for z in the equation y=-3x-z+10.
y=1
Calculate y from y=-3\times 2-3+10.
x=2 y=1 z=3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}