Solve for x, y
x = -\frac{61}{9} = -6\frac{7}{9} \approx -6.777777778
y = \frac{22}{3} = 7\frac{1}{3} \approx 7.333333333
Graph
Share
Copied to clipboard
3y=31-9
Consider the second equation. Subtract 9 from both sides.
3y=22
Subtract 9 from 31 to get 22.
y=\frac{22}{3}
Divide both sides by 3.
3x+7\times \frac{22}{3}=31
Consider the first equation. Insert the known values of variables into the equation.
3x+\frac{154}{3}=31
Multiply 7 and \frac{22}{3} to get \frac{154}{3}.
3x=31-\frac{154}{3}
Subtract \frac{154}{3} from both sides.
3x=-\frac{61}{3}
Subtract \frac{154}{3} from 31 to get -\frac{61}{3}.
x=\frac{-\frac{61}{3}}{3}
Divide both sides by 3.
x=\frac{-61}{3\times 3}
Express \frac{-\frac{61}{3}}{3} as a single fraction.
x=\frac{-61}{9}
Multiply 3 and 3 to get 9.
x=-\frac{61}{9}
Fraction \frac{-61}{9} can be rewritten as -\frac{61}{9} by extracting the negative sign.
x=-\frac{61}{9} y=\frac{22}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}