Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x+4y=374,6x+9y=733
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+4y=374
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-4y+374
Subtract 4y from both sides of the equation.
x=\frac{1}{3}\left(-4y+374\right)
Divide both sides by 3.
x=-\frac{4}{3}y+\frac{374}{3}
Multiply \frac{1}{3} times -4y+374.
6\left(-\frac{4}{3}y+\frac{374}{3}\right)+9y=733
Substitute \frac{-4y+374}{3} for x in the other equation, 6x+9y=733.
-8y+748+9y=733
Multiply 6 times \frac{-4y+374}{3}.
y+748=733
Add -8y to 9y.
y=-15
Subtract 748 from both sides of the equation.
x=-\frac{4}{3}\left(-15\right)+\frac{374}{3}
Substitute -15 for y in x=-\frac{4}{3}y+\frac{374}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=20+\frac{374}{3}
Multiply -\frac{4}{3} times -15.
x=\frac{434}{3}
Add \frac{374}{3} to 20.
x=\frac{434}{3},y=-15
The system is now solved.
3x+4y=374,6x+9y=733
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&4\\6&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}374\\733\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&4\\6&9\end{matrix}\right))\left(\begin{matrix}3&4\\6&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\6&9\end{matrix}\right))\left(\begin{matrix}374\\733\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&4\\6&9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\6&9\end{matrix}\right))\left(\begin{matrix}374\\733\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\6&9\end{matrix}\right))\left(\begin{matrix}374\\733\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{3\times 9-4\times 6}&-\frac{4}{3\times 9-4\times 6}\\-\frac{6}{3\times 9-4\times 6}&\frac{3}{3\times 9-4\times 6}\end{matrix}\right)\left(\begin{matrix}374\\733\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&-\frac{4}{3}\\-2&1\end{matrix}\right)\left(\begin{matrix}374\\733\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 374-\frac{4}{3}\times 733\\-2\times 374+733\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{434}{3}\\-15\end{matrix}\right)
Do the arithmetic.
x=\frac{434}{3},y=-15
Extract the matrix elements x and y.
3x+4y=374,6x+9y=733
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
6\times 3x+6\times 4y=6\times 374,3\times 6x+3\times 9y=3\times 733
To make 3x and 6x equal, multiply all terms on each side of the first equation by 6 and all terms on each side of the second by 3.
18x+24y=2244,18x+27y=2199
Simplify.
18x-18x+24y-27y=2244-2199
Subtract 18x+27y=2199 from 18x+24y=2244 by subtracting like terms on each side of the equal sign.
24y-27y=2244-2199
Add 18x to -18x. Terms 18x and -18x cancel out, leaving an equation with only one variable that can be solved.
-3y=2244-2199
Add 24y to -27y.
-3y=45
Add 2244 to -2199.
y=-15
Divide both sides by -3.
6x+9\left(-15\right)=733
Substitute -15 for y in 6x+9y=733. Because the resulting equation contains only one variable, you can solve for x directly.
6x-135=733
Multiply 9 times -15.
6x=868
Add 135 to both sides of the equation.
x=\frac{434}{3}
Divide both sides by 6.
x=\frac{434}{3},y=-15
The system is now solved.