Solve for x, y
x = -\frac{310}{13} = -23\frac{11}{13} \approx -23.846153846
y = \frac{517}{13} = 39\frac{10}{13} \approx 39.769230769
Graph
Share
Copied to clipboard
3x+2y=8,7x+9y=191
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+2y=8
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-2y+8
Subtract 2y from both sides of the equation.
x=\frac{1}{3}\left(-2y+8\right)
Divide both sides by 3.
x=-\frac{2}{3}y+\frac{8}{3}
Multiply \frac{1}{3} times -2y+8.
7\left(-\frac{2}{3}y+\frac{8}{3}\right)+9y=191
Substitute \frac{-2y+8}{3} for x in the other equation, 7x+9y=191.
-\frac{14}{3}y+\frac{56}{3}+9y=191
Multiply 7 times \frac{-2y+8}{3}.
\frac{13}{3}y+\frac{56}{3}=191
Add -\frac{14y}{3} to 9y.
\frac{13}{3}y=\frac{517}{3}
Subtract \frac{56}{3} from both sides of the equation.
y=\frac{517}{13}
Divide both sides of the equation by \frac{13}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{2}{3}\times \frac{517}{13}+\frac{8}{3}
Substitute \frac{517}{13} for y in x=-\frac{2}{3}y+\frac{8}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{1034}{39}+\frac{8}{3}
Multiply -\frac{2}{3} times \frac{517}{13} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=-\frac{310}{13}
Add \frac{8}{3} to -\frac{1034}{39} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{310}{13},y=\frac{517}{13}
The system is now solved.
3x+2y=8,7x+9y=191
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&2\\7&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\191\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&2\\7&9\end{matrix}\right))\left(\begin{matrix}3&2\\7&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\7&9\end{matrix}\right))\left(\begin{matrix}8\\191\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&2\\7&9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\7&9\end{matrix}\right))\left(\begin{matrix}8\\191\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\7&9\end{matrix}\right))\left(\begin{matrix}8\\191\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{3\times 9-2\times 7}&-\frac{2}{3\times 9-2\times 7}\\-\frac{7}{3\times 9-2\times 7}&\frac{3}{3\times 9-2\times 7}\end{matrix}\right)\left(\begin{matrix}8\\191\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{13}&-\frac{2}{13}\\-\frac{7}{13}&\frac{3}{13}\end{matrix}\right)\left(\begin{matrix}8\\191\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{13}\times 8-\frac{2}{13}\times 191\\-\frac{7}{13}\times 8+\frac{3}{13}\times 191\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{310}{13}\\\frac{517}{13}\end{matrix}\right)
Do the arithmetic.
x=-\frac{310}{13},y=\frac{517}{13}
Extract the matrix elements x and y.
3x+2y=8,7x+9y=191
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
7\times 3x+7\times 2y=7\times 8,3\times 7x+3\times 9y=3\times 191
To make 3x and 7x equal, multiply all terms on each side of the first equation by 7 and all terms on each side of the second by 3.
21x+14y=56,21x+27y=573
Simplify.
21x-21x+14y-27y=56-573
Subtract 21x+27y=573 from 21x+14y=56 by subtracting like terms on each side of the equal sign.
14y-27y=56-573
Add 21x to -21x. Terms 21x and -21x cancel out, leaving an equation with only one variable that can be solved.
-13y=56-573
Add 14y to -27y.
-13y=-517
Add 56 to -573.
y=\frac{517}{13}
Divide both sides by -13.
7x+9\times \frac{517}{13}=191
Substitute \frac{517}{13} for y in 7x+9y=191. Because the resulting equation contains only one variable, you can solve for x directly.
7x+\frac{4653}{13}=191
Multiply 9 times \frac{517}{13}.
7x=-\frac{2170}{13}
Subtract \frac{4653}{13} from both sides of the equation.
x=-\frac{310}{13}
Divide both sides by 7.
x=-\frac{310}{13},y=\frac{517}{13}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}