\left. \begin{array} { l } { 3 n ^ { 2 } ( n - 3 ) - ( 2 n + 5 ) ^ { 2 } } \\ { ( 3 a - 2 b ) ( 3 a + 2 b ) ( 9 a ^ { 2 } - 4 b ^ { 2 } ) } \end{array} \right.
Least Common Multiple
\left(3n^{3}-13n^{2}-20n-25\right)\left(9a^{2}-4b^{2}\right)^{2}
Evaluate
3n^{3}-13n^{2}-20n-25,\ \left(9a^{2}-4b^{2}\right)^{2}
Share
Copied to clipboard
\left(9a^{2}-4b^{2}\right)^{2}=\left(3a-2b\right)^{2}\left(3a+2b\right)^{2}
Factor the expressions that are not already factored.
\left(3n^{3}-13n^{2}-20n-25\right)\left(9a^{2}-4b^{2}\right)^{2}
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
-216a^{2}b^{2}n^{3}+48n^{3}b^{4}+243n^{3}a^{4}+936a^{2}b^{2}n^{2}-1053n^{2}a^{4}-208n^{2}b^{4}+1440na^{2}b^{2}-1620na^{4}-320nb^{4}+1800a^{2}b^{2}-2025a^{4}-400b^{4}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}