Solve for a, b
a=-\frac{4}{5}=-0.8\text{, }b=\frac{3}{5}=0.6
a=\frac{4}{5}=0.8\text{, }b=-\frac{3}{5}=-0.6
Share
Copied to clipboard
3a+4b=0,b^{2}+a^{2}=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3a+4b=0
Solve 3a+4b=0 for a by isolating a on the left hand side of the equal sign.
3a=-4b
Subtract 4b from both sides of the equation.
a=-\frac{4}{3}b
Divide both sides by 3.
b^{2}+\left(-\frac{4}{3}b\right)^{2}=1
Substitute -\frac{4}{3}b for a in the other equation, b^{2}+a^{2}=1.
b^{2}+\frac{16}{9}b^{2}=1
Square -\frac{4}{3}b.
\frac{25}{9}b^{2}=1
Add b^{2} to \frac{16}{9}b^{2}.
\frac{25}{9}b^{2}-1=0
Subtract 1 from both sides of the equation.
b=\frac{0±\sqrt{0^{2}-4\times \frac{25}{9}\left(-1\right)}}{2\times \frac{25}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-\frac{4}{3}\right)^{2} for a, 1\times 0\left(-\frac{4}{3}\right)\times 2 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\times \frac{25}{9}\left(-1\right)}}{2\times \frac{25}{9}}
Square 1\times 0\left(-\frac{4}{3}\right)\times 2.
b=\frac{0±\sqrt{-\frac{100}{9}\left(-1\right)}}{2\times \frac{25}{9}}
Multiply -4 times 1+1\left(-\frac{4}{3}\right)^{2}.
b=\frac{0±\sqrt{\frac{100}{9}}}{2\times \frac{25}{9}}
Multiply -\frac{100}{9} times -1.
b=\frac{0±\frac{10}{3}}{2\times \frac{25}{9}}
Take the square root of \frac{100}{9}.
b=\frac{0±\frac{10}{3}}{\frac{50}{9}}
Multiply 2 times 1+1\left(-\frac{4}{3}\right)^{2}.
b=\frac{3}{5}
Now solve the equation b=\frac{0±\frac{10}{3}}{\frac{50}{9}} when ± is plus.
b=-\frac{3}{5}
Now solve the equation b=\frac{0±\frac{10}{3}}{\frac{50}{9}} when ± is minus.
a=-\frac{4}{3}\times \frac{3}{5}
There are two solutions for b: \frac{3}{5} and -\frac{3}{5}. Substitute \frac{3}{5} for b in the equation a=-\frac{4}{3}b to find the corresponding solution for a that satisfies both equations.
a=-\frac{4}{5}
Multiply -\frac{4}{3} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
a=-\frac{4}{3}\left(-\frac{3}{5}\right)
Now substitute -\frac{3}{5} for b in the equation a=-\frac{4}{3}b and solve to find the corresponding solution for a that satisfies both equations.
a=\frac{4}{5}
Multiply -\frac{4}{3} times -\frac{3}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
a=-\frac{4}{5},b=\frac{3}{5}\text{ or }a=\frac{4}{5},b=-\frac{3}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}