Solve for a, b, c
a=\frac{1}{8}=0.125
b=\frac{1}{32}=0.03125
c=-\frac{15}{32}=-0.46875
Share
Copied to clipboard
c=-3a-3b
Solve 3a+3b+c=0 for c.
-4a+b-\left(-3a-3b\right)=0 3a+b+3\left(-3a-3b\right)=-1
Substitute -3a-3b for c in the second and third equation.
b=\frac{1}{4}a a=-\frac{4}{3}b+\frac{1}{6}
Solve these equations for b and a respectively.
a=-\frac{4}{3}\times \frac{1}{4}a+\frac{1}{6}
Substitute \frac{1}{4}a for b in the equation a=-\frac{4}{3}b+\frac{1}{6}.
a=\frac{1}{8}
Solve a=-\frac{4}{3}\times \frac{1}{4}a+\frac{1}{6} for a.
b=\frac{1}{4}\times \frac{1}{8}
Substitute \frac{1}{8} for a in the equation b=\frac{1}{4}a.
b=\frac{1}{32}
Calculate b from b=\frac{1}{4}\times \frac{1}{8}.
c=-3\times \frac{1}{8}-3\times \frac{1}{32}
Substitute \frac{1}{32} for b and \frac{1}{8} for a in the equation c=-3a-3b.
c=-\frac{15}{32}
Calculate c from c=-3\times \frac{1}{8}-3\times \frac{1}{32}.
a=\frac{1}{8} b=\frac{1}{32} c=-\frac{15}{32}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}