Solve for y, b
y = \frac{64}{7} = 9\frac{1}{7} \approx 9.142857143
b=-\frac{1}{3}\approx -0.333333333
Share
Copied to clipboard
3y+24=10\left(y-4\right)
Consider the first equation. Use the distributive property to multiply 3 by y+8.
3y+24=10y-40
Use the distributive property to multiply 10 by y-4.
3y+24-10y=-40
Subtract 10y from both sides.
-7y+24=-40
Combine 3y and -10y to get -7y.
-7y=-40-24
Subtract 24 from both sides.
-7y=-64
Subtract 24 from -40 to get -64.
y=\frac{-64}{-7}
Divide both sides by -7.
y=\frac{64}{7}
Fraction \frac{-64}{-7} can be simplified to \frac{64}{7} by removing the negative sign from both the numerator and the denominator.
2b+1+b+2=2
Consider the second equation. Combine b and b to get 2b.
3b+1+2=2
Combine 2b and b to get 3b.
3b+3=2
Add 1 and 2 to get 3.
3b=2-3
Subtract 3 from both sides.
3b=-1
Subtract 3 from 2 to get -1.
b=-\frac{1}{3}
Divide both sides by 3.
y=\frac{64}{7} b=-\frac{1}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}