Solve for n, k
n=40
k=7
Share
Copied to clipboard
3n-6-19=5+2\left(n+5\right)
Consider the first equation. Use the distributive property to multiply 3 by n-2.
3n-25=5+2\left(n+5\right)
Subtract 19 from -6 to get -25.
3n-25=5+2n+10
Use the distributive property to multiply 2 by n+5.
3n-25=15+2n
Add 5 and 10 to get 15.
3n-25-2n=15
Subtract 2n from both sides.
n-25=15
Combine 3n and -2n to get n.
n=15+25
Add 25 to both sides.
n=40
Add 15 and 25 to get 40.
12k-3-\left(6k-10\right)=7k
Consider the second equation. Use the distributive property to multiply 3 by 4k-1.
12k-3-6k+10=7k
To find the opposite of 6k-10, find the opposite of each term.
6k-3+10=7k
Combine 12k and -6k to get 6k.
6k+7=7k
Add -3 and 10 to get 7.
6k+7-7k=0
Subtract 7k from both sides.
-k+7=0
Combine 6k and -7k to get -k.
-k=-7
Subtract 7 from both sides. Anything subtracted from zero gives its negation.
k=\frac{-7}{-1}
Divide both sides by -1.
k=7
Fraction \frac{-7}{-1} can be simplified to 7 by removing the negative sign from both the numerator and the denominator.
n=40 k=7
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}