Solve for t, c
t=\frac{3}{4}=0.75
c = \frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
-4t=4-7
Consider the second equation. Subtract 7 from both sides.
-4t=-3
Subtract 7 from 4 to get -3.
t=\frac{-3}{-4}
Divide both sides by -4.
t=\frac{3}{4}
Fraction \frac{-3}{-4} can be simplified to \frac{3}{4} by removing the negative sign from both the numerator and the denominator.
3+2\times \frac{3}{4}-3=c
Consider the first equation. Insert the known values of variables into the equation.
3+\frac{3}{2}-3=c
Multiply 2 and \frac{3}{4} to get \frac{3}{2}.
\frac{9}{2}-3=c
Add 3 and \frac{3}{2} to get \frac{9}{2}.
\frac{3}{2}=c
Subtract 3 from \frac{9}{2} to get \frac{3}{2}.
c=\frac{3}{2}
Swap sides so that all variable terms are on the left hand side.
t=\frac{3}{4} c=\frac{3}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}