Solve for a, a_5
a=\frac{14}{19}\approx 0.736842105
a_{5} = \frac{1379}{304} = 4\frac{163}{304} \approx 4.536184211
Share
Copied to clipboard
76a=80.5-24.5
Consider the second equation. Subtract 24.5 from both sides.
76a=56
Subtract 24.5 from 80.5 to get 56.
a=\frac{56}{76}
Divide both sides by 76.
a=\frac{14}{19}
Reduce the fraction \frac{56}{76} to lowest terms by extracting and canceling out 4.
24.5-9\times \frac{14}{19}=8a_{5}-25\times \frac{14}{19}
Consider the first equation. Insert the known values of variables into the equation.
24.5-\frac{126}{19}=8a_{5}-25\times \frac{14}{19}
Multiply -9 and \frac{14}{19} to get -\frac{126}{19}.
\frac{679}{38}=8a_{5}-25\times \frac{14}{19}
Subtract \frac{126}{19} from 24.5 to get \frac{679}{38}.
\frac{679}{38}=8a_{5}-\frac{350}{19}
Multiply -25 and \frac{14}{19} to get -\frac{350}{19}.
8a_{5}-\frac{350}{19}=\frac{679}{38}
Swap sides so that all variable terms are on the left hand side.
8a_{5}=\frac{679}{38}+\frac{350}{19}
Add \frac{350}{19} to both sides.
8a_{5}=\frac{1379}{38}
Add \frac{679}{38} and \frac{350}{19} to get \frac{1379}{38}.
a_{5}=\frac{\frac{1379}{38}}{8}
Divide both sides by 8.
a_{5}=\frac{1379}{38\times 8}
Express \frac{\frac{1379}{38}}{8} as a single fraction.
a_{5}=\frac{1379}{304}
Multiply 38 and 8 to get 304.
a=\frac{14}{19} a_{5}=\frac{1379}{304}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}