Solve for x, y
x=-3
y=4
Graph
Share
Copied to clipboard
215x+170y=35,185x+230y=365
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
215x+170y=35
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
215x=-170y+35
Subtract 170y from both sides of the equation.
x=\frac{1}{215}\left(-170y+35\right)
Divide both sides by 215.
x=-\frac{34}{43}y+\frac{7}{43}
Multiply \frac{1}{215} times -170y+35.
185\left(-\frac{34}{43}y+\frac{7}{43}\right)+230y=365
Substitute \frac{-34y+7}{43} for x in the other equation, 185x+230y=365.
-\frac{6290}{43}y+\frac{1295}{43}+230y=365
Multiply 185 times \frac{-34y+7}{43}.
\frac{3600}{43}y+\frac{1295}{43}=365
Add -\frac{6290y}{43} to 230y.
\frac{3600}{43}y=\frac{14400}{43}
Subtract \frac{1295}{43} from both sides of the equation.
y=4
Divide both sides of the equation by \frac{3600}{43}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{34}{43}\times 4+\frac{7}{43}
Substitute 4 for y in x=-\frac{34}{43}y+\frac{7}{43}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-136+7}{43}
Multiply -\frac{34}{43} times 4.
x=-3
Add \frac{7}{43} to -\frac{136}{43} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-3,y=4
The system is now solved.
215x+170y=35,185x+230y=365
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}215&170\\185&230\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}35\\365\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}215&170\\185&230\end{matrix}\right))\left(\begin{matrix}215&170\\185&230\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}215&170\\185&230\end{matrix}\right))\left(\begin{matrix}35\\365\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}215&170\\185&230\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}215&170\\185&230\end{matrix}\right))\left(\begin{matrix}35\\365\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}215&170\\185&230\end{matrix}\right))\left(\begin{matrix}35\\365\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{230}{215\times 230-170\times 185}&-\frac{170}{215\times 230-170\times 185}\\-\frac{185}{215\times 230-170\times 185}&\frac{215}{215\times 230-170\times 185}\end{matrix}\right)\left(\begin{matrix}35\\365\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{23}{1800}&-\frac{17}{1800}\\-\frac{37}{3600}&\frac{43}{3600}\end{matrix}\right)\left(\begin{matrix}35\\365\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{23}{1800}\times 35-\frac{17}{1800}\times 365\\-\frac{37}{3600}\times 35+\frac{43}{3600}\times 365\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\4\end{matrix}\right)
Do the arithmetic.
x=-3,y=4
Extract the matrix elements x and y.
215x+170y=35,185x+230y=365
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
185\times 215x+185\times 170y=185\times 35,215\times 185x+215\times 230y=215\times 365
To make 215x and 185x equal, multiply all terms on each side of the first equation by 185 and all terms on each side of the second by 215.
39775x+31450y=6475,39775x+49450y=78475
Simplify.
39775x-39775x+31450y-49450y=6475-78475
Subtract 39775x+49450y=78475 from 39775x+31450y=6475 by subtracting like terms on each side of the equal sign.
31450y-49450y=6475-78475
Add 39775x to -39775x. Terms 39775x and -39775x cancel out, leaving an equation with only one variable that can be solved.
-18000y=6475-78475
Add 31450y to -49450y.
-18000y=-72000
Add 6475 to -78475.
y=4
Divide both sides by -18000.
185x+230\times 4=365
Substitute 4 for y in 185x+230y=365. Because the resulting equation contains only one variable, you can solve for x directly.
185x+920=365
Multiply 230 times 4.
185x=-555
Subtract 920 from both sides of the equation.
x=-3
Divide both sides by 185.
x=-3,y=4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}