Solve for x, y
x = -\frac{40}{21} = -1\frac{19}{21} \approx -1.904761905
y = \frac{31}{3} = 10\frac{1}{3} \approx 10.333333333
Graph
Share
Copied to clipboard
21x=84-124
Consider the first equation. Subtract 124 from both sides.
21x=-40
Subtract 124 from 84 to get -40.
x=-\frac{40}{21}
Divide both sides by 21.
7\left(-\frac{40}{21}\right)+4y=28
Consider the second equation. Insert the known values of variables into the equation.
-\frac{40}{3}+4y=28
Multiply 7 and -\frac{40}{21} to get -\frac{40}{3}.
4y=28+\frac{40}{3}
Add \frac{40}{3} to both sides.
4y=\frac{124}{3}
Add 28 and \frac{40}{3} to get \frac{124}{3}.
y=\frac{\frac{124}{3}}{4}
Divide both sides by 4.
y=\frac{124}{3\times 4}
Express \frac{\frac{124}{3}}{4} as a single fraction.
y=\frac{124}{12}
Multiply 3 and 4 to get 12.
y=\frac{31}{3}
Reduce the fraction \frac{124}{12} to lowest terms by extracting and canceling out 4.
x=-\frac{40}{21} y=\frac{31}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}