Solve for x, y
x = \frac{50}{3} = 16\frac{2}{3} \approx 16.666666667
y = \frac{160}{3} = 53\frac{1}{3} \approx 53.333333333
Graph
Share
Copied to clipboard
20x+50y=3000,x+y=70
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
20x+50y=3000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
20x=-50y+3000
Subtract 50y from both sides of the equation.
x=\frac{1}{20}\left(-50y+3000\right)
Divide both sides by 20.
x=-\frac{5}{2}y+150
Multiply \frac{1}{20} times -50y+3000.
-\frac{5}{2}y+150+y=70
Substitute -\frac{5y}{2}+150 for x in the other equation, x+y=70.
-\frac{3}{2}y+150=70
Add -\frac{5y}{2} to y.
-\frac{3}{2}y=-80
Subtract 150 from both sides of the equation.
y=\frac{160}{3}
Divide both sides of the equation by -\frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{5}{2}\times \frac{160}{3}+150
Substitute \frac{160}{3} for y in x=-\frac{5}{2}y+150. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{400}{3}+150
Multiply -\frac{5}{2} times \frac{160}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{50}{3}
Add 150 to -\frac{400}{3}.
x=\frac{50}{3},y=\frac{160}{3}
The system is now solved.
20x+50y=3000,x+y=70
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}20&50\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3000\\70\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}20&50\\1&1\end{matrix}\right))\left(\begin{matrix}20&50\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}20&50\\1&1\end{matrix}\right))\left(\begin{matrix}3000\\70\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}20&50\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}20&50\\1&1\end{matrix}\right))\left(\begin{matrix}3000\\70\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}20&50\\1&1\end{matrix}\right))\left(\begin{matrix}3000\\70\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20-50}&-\frac{50}{20-50}\\-\frac{1}{20-50}&\frac{20}{20-50}\end{matrix}\right)\left(\begin{matrix}3000\\70\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{30}&\frac{5}{3}\\\frac{1}{30}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}3000\\70\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{30}\times 3000+\frac{5}{3}\times 70\\\frac{1}{30}\times 3000-\frac{2}{3}\times 70\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{50}{3}\\\frac{160}{3}\end{matrix}\right)
Do the arithmetic.
x=\frac{50}{3},y=\frac{160}{3}
Extract the matrix elements x and y.
20x+50y=3000,x+y=70
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
20x+50y=3000,20x+20y=20\times 70
To make 20x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 20.
20x+50y=3000,20x+20y=1400
Simplify.
20x-20x+50y-20y=3000-1400
Subtract 20x+20y=1400 from 20x+50y=3000 by subtracting like terms on each side of the equal sign.
50y-20y=3000-1400
Add 20x to -20x. Terms 20x and -20x cancel out, leaving an equation with only one variable that can be solved.
30y=3000-1400
Add 50y to -20y.
30y=1600
Add 3000 to -1400.
y=\frac{160}{3}
Divide both sides by 30.
x+\frac{160}{3}=70
Substitute \frac{160}{3} for y in x+y=70. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{50}{3}
Subtract \frac{160}{3} from both sides of the equation.
x=\frac{50}{3},y=\frac{160}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}