Solve for p, q
p=6845000
q=-4558000
Share
Copied to clipboard
20p+30q=160000,p+q=2287000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
20p+30q=160000
Choose one of the equations and solve it for p by isolating p on the left hand side of the equal sign.
20p=-30q+160000
Subtract 30q from both sides of the equation.
p=\frac{1}{20}\left(-30q+160000\right)
Divide both sides by 20.
p=-\frac{3}{2}q+8000
Multiply \frac{1}{20} times -30q+160000.
-\frac{3}{2}q+8000+q=2287000
Substitute -\frac{3q}{2}+8000 for p in the other equation, p+q=2287000.
-\frac{1}{2}q+8000=2287000
Add -\frac{3q}{2} to q.
-\frac{1}{2}q=2279000
Subtract 8000 from both sides of the equation.
q=-4558000
Multiply both sides by -2.
p=-\frac{3}{2}\left(-4558000\right)+8000
Substitute -4558000 for q in p=-\frac{3}{2}q+8000. Because the resulting equation contains only one variable, you can solve for p directly.
p=6837000+8000
Multiply -\frac{3}{2} times -4558000.
p=6845000
Add 8000 to 6837000.
p=6845000,q=-4558000
The system is now solved.
20p+30q=160000,p+q=2287000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}20&30\\1&1\end{matrix}\right)\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}160000\\2287000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}20&30\\1&1\end{matrix}\right))\left(\begin{matrix}20&30\\1&1\end{matrix}\right)\left(\begin{matrix}p\\q\end{matrix}\right)=inverse(\left(\begin{matrix}20&30\\1&1\end{matrix}\right))\left(\begin{matrix}160000\\2287000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}20&30\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}p\\q\end{matrix}\right)=inverse(\left(\begin{matrix}20&30\\1&1\end{matrix}\right))\left(\begin{matrix}160000\\2287000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}p\\q\end{matrix}\right)=inverse(\left(\begin{matrix}20&30\\1&1\end{matrix}\right))\left(\begin{matrix}160000\\2287000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20-30}&-\frac{30}{20-30}\\-\frac{1}{20-30}&\frac{20}{20-30}\end{matrix}\right)\left(\begin{matrix}160000\\2287000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}&3\\\frac{1}{10}&-2\end{matrix}\right)\left(\begin{matrix}160000\\2287000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}\times 160000+3\times 2287000\\\frac{1}{10}\times 160000-2\times 2287000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}6845000\\-4558000\end{matrix}\right)
Do the arithmetic.
p=6845000,q=-4558000
Extract the matrix elements p and q.
20p+30q=160000,p+q=2287000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
20p+30q=160000,20p+20q=20\times 2287000
To make 20p and p equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 20.
20p+30q=160000,20p+20q=45740000
Simplify.
20p-20p+30q-20q=160000-45740000
Subtract 20p+20q=45740000 from 20p+30q=160000 by subtracting like terms on each side of the equal sign.
30q-20q=160000-45740000
Add 20p to -20p. Terms 20p and -20p cancel out, leaving an equation with only one variable that can be solved.
10q=160000-45740000
Add 30q to -20q.
10q=-45580000
Add 160000 to -45740000.
q=-4558000
Divide both sides by 10.
p-4558000=2287000
Substitute -4558000 for q in p+q=2287000. Because the resulting equation contains only one variable, you can solve for p directly.
p=6845000
Add 4558000 to both sides of the equation.
p=6845000,q=-4558000
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}