Solve for y, x
x=-\frac{2}{3}\approx -0.666666667\text{, }y=-5
x=\frac{2}{3}\approx 0.666666667\text{, }y=5
Graph
Share
Copied to clipboard
2y-15x=0
Consider the first equation. Subtract 15x from both sides.
2y-15x=0,x^{2}+y^{2}=\frac{229}{9}
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2y-15x=0
Solve 2y-15x=0 for y by isolating y on the left hand side of the equal sign.
2y=15x
Subtract -15x from both sides of the equation.
y=\frac{15}{2}x
Divide both sides by 2.
x^{2}+\left(\frac{15}{2}x\right)^{2}=\frac{229}{9}
Substitute \frac{15}{2}x for y in the other equation, x^{2}+y^{2}=\frac{229}{9}.
x^{2}+\frac{225}{4}x^{2}=\frac{229}{9}
Square \frac{15}{2}x.
\frac{229}{4}x^{2}=\frac{229}{9}
Add x^{2} to \frac{225}{4}x^{2}.
\frac{229}{4}x^{2}-\frac{229}{9}=0
Subtract \frac{229}{9} from both sides of the equation.
x=\frac{0±\sqrt{0^{2}-4\times \frac{229}{4}\left(-\frac{229}{9}\right)}}{2\times \frac{229}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times \left(\frac{15}{2}\right)^{2} for a, 1\times 0\times 2\times \frac{15}{2} for b, and -\frac{229}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{229}{4}\left(-\frac{229}{9}\right)}}{2\times \frac{229}{4}}
Square 1\times 0\times 2\times \frac{15}{2}.
x=\frac{0±\sqrt{-229\left(-\frac{229}{9}\right)}}{2\times \frac{229}{4}}
Multiply -4 times 1+1\times \left(\frac{15}{2}\right)^{2}.
x=\frac{0±\sqrt{\frac{52441}{9}}}{2\times \frac{229}{4}}
Multiply -229 times -\frac{229}{9}.
x=\frac{0±\frac{229}{3}}{2\times \frac{229}{4}}
Take the square root of \frac{52441}{9}.
x=\frac{0±\frac{229}{3}}{\frac{229}{2}}
Multiply 2 times 1+1\times \left(\frac{15}{2}\right)^{2}.
x=\frac{2}{3}
Now solve the equation x=\frac{0±\frac{229}{3}}{\frac{229}{2}} when ± is plus.
x=-\frac{2}{3}
Now solve the equation x=\frac{0±\frac{229}{3}}{\frac{229}{2}} when ± is minus.
y=\frac{15}{2}\times \frac{2}{3}
There are two solutions for x: \frac{2}{3} and -\frac{2}{3}. Substitute \frac{2}{3} for x in the equation y=\frac{15}{2}x to find the corresponding solution for y that satisfies both equations.
y=5
Multiply \frac{15}{2} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{15}{2}\left(-\frac{2}{3}\right)
Now substitute -\frac{2}{3} for x in the equation y=\frac{15}{2}x and solve to find the corresponding solution for y that satisfies both equations.
y=-5
Multiply \frac{15}{2} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=5,x=\frac{2}{3}\text{ or }y=-5,x=-\frac{2}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}