Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

x_{2}=-2x_{1}-x_{3}+6
Solve 2x_{1}+x_{2}+x_{3}=6 for x_{2}.
3x_{1}-2\left(-2x_{1}-x_{3}+6\right)-3x_{3}=5 8x_{1}+2\left(-2x_{1}-x_{3}+6\right)+5x_{3}=11
Substitute -2x_{1}-x_{3}+6 for x_{2} in the second and third equation.
x_{1}=\frac{17}{7}+\frac{1}{7}x_{3} x_{3}=-\frac{4}{3}x_{1}-\frac{1}{3}
Solve these equations for x_{1} and x_{3} respectively.
x_{3}=-\frac{4}{3}\left(\frac{17}{7}+\frac{1}{7}x_{3}\right)-\frac{1}{3}
Substitute \frac{17}{7}+\frac{1}{7}x_{3} for x_{1} in the equation x_{3}=-\frac{4}{3}x_{1}-\frac{1}{3}.
x_{3}=-3
Solve x_{3}=-\frac{4}{3}\left(\frac{17}{7}+\frac{1}{7}x_{3}\right)-\frac{1}{3} for x_{3}.
x_{1}=\frac{17}{7}+\frac{1}{7}\left(-3\right)
Substitute -3 for x_{3} in the equation x_{1}=\frac{17}{7}+\frac{1}{7}x_{3}.
x_{1}=2
Calculate x_{1} from x_{1}=\frac{17}{7}+\frac{1}{7}\left(-3\right).
x_{2}=-2\times 2-\left(-3\right)+6
Substitute 2 for x_{1} and -3 for x_{3} in the equation x_{2}=-2x_{1}-x_{3}+6.
x_{2}=5
Calculate x_{2} from x_{2}=-2\times 2-\left(-3\right)+6.
x_{1}=2 x_{2}=5 x_{3}=-3
The system is now solved.