Solve for x_1, x_2, x_3
x_{1}=12000
x_{2}=18000
x_{3}=7000
Share
Copied to clipboard
x_{3}=67000-2x_{1}-2x_{2}
Solve 2x_{1}+2x_{2}+x_{3}=67000 for x_{3}.
3x_{1}+x_{2}+67000-2x_{1}-2x_{2}=61000 x_{1}+3x_{2}+2\left(67000-2x_{1}-2x_{2}\right)=80000
Substitute 67000-2x_{1}-2x_{2} for x_{3} in the second and third equation.
x_{2}=x_{1}+6000 x_{1}=-\frac{1}{3}x_{2}+18000
Solve these equations for x_{2} and x_{1} respectively.
x_{1}=-\frac{1}{3}\left(x_{1}+6000\right)+18000
Substitute x_{1}+6000 for x_{2} in the equation x_{1}=-\frac{1}{3}x_{2}+18000.
x_{1}=12000
Solve x_{1}=-\frac{1}{3}\left(x_{1}+6000\right)+18000 for x_{1}.
x_{2}=12000+6000
Substitute 12000 for x_{1} in the equation x_{2}=x_{1}+6000.
x_{2}=18000
Calculate x_{2} from x_{2}=12000+6000.
x_{3}=67000-2\times 12000-2\times 18000
Substitute 18000 for x_{2} and 12000 for x_{1} in the equation x_{3}=67000-2x_{1}-2x_{2}.
x_{3}=7000
Calculate x_{3} from x_{3}=67000-2\times 12000-2\times 18000.
x_{1}=12000 x_{2}=18000 x_{3}=7000
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}