Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x-5+15x=1-3\left(1-2x\right)
Consider the first equation. Use the distributive property to multiply -5 by 1-3x.
17x-5=1-3\left(1-2x\right)
Combine 2x and 15x to get 17x.
17x-5=1-3+6x
Use the distributive property to multiply -3 by 1-2x.
17x-5=-2+6x
Subtract 3 from 1 to get -2.
17x-5-6x=-2
Subtract 6x from both sides.
11x-5=-2
Combine 17x and -6x to get 11x.
11x=-2+5
Add 5 to both sides.
11x=3
Add -2 and 5 to get 3.
x=\frac{3}{11}
Divide both sides by 11.
2\times \frac{3}{11}-5+5y=1-3+6\times \frac{3}{11}
Consider the second equation. Insert the known values of variables into the equation.
\frac{6}{11}-5+5y=1-3+6\times \frac{3}{11}
Multiply 2 and \frac{3}{11} to get \frac{6}{11}.
-\frac{49}{11}+5y=1-3+6\times \frac{3}{11}
Subtract 5 from \frac{6}{11} to get -\frac{49}{11}.
-\frac{49}{11}+5y=-2+6\times \frac{3}{11}
Subtract 3 from 1 to get -2.
-\frac{49}{11}+5y=-2+\frac{18}{11}
Multiply 6 and \frac{3}{11} to get \frac{18}{11}.
-\frac{49}{11}+5y=-\frac{4}{11}
Add -2 and \frac{18}{11} to get -\frac{4}{11}.
5y=-\frac{4}{11}+\frac{49}{11}
Add \frac{49}{11} to both sides.
5y=\frac{45}{11}
Add -\frac{4}{11} and \frac{49}{11} to get \frac{45}{11}.
y=\frac{\frac{45}{11}}{5}
Divide both sides by 5.
y=\frac{45}{11\times 5}
Express \frac{\frac{45}{11}}{5} as a single fraction.
y=\frac{45}{55}
Multiply 11 and 5 to get 55.
y=\frac{9}{11}
Reduce the fraction \frac{45}{55} to lowest terms by extracting and canceling out 5.
x=\frac{3}{11} y=\frac{9}{11}
The system is now solved.