Factor
2\left(x-\left(-\sqrt{22}-5\right)\right)\left(x-\left(\sqrt{22}-5\right)\right)
Evaluate
2\left(x^{2}+10x+3\right)
Graph
Share
Copied to clipboard
2x^{2}+20x+6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-20±\sqrt{20^{2}-4\times 2\times 6}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{400-4\times 2\times 6}}{2\times 2}
Square 20.
x=\frac{-20±\sqrt{400-8\times 6}}{2\times 2}
Multiply -4 times 2.
x=\frac{-20±\sqrt{400-48}}{2\times 2}
Multiply -8 times 6.
x=\frac{-20±\sqrt{352}}{2\times 2}
Add 400 to -48.
x=\frac{-20±4\sqrt{22}}{2\times 2}
Take the square root of 352.
x=\frac{-20±4\sqrt{22}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{22}-20}{4}
Now solve the equation x=\frac{-20±4\sqrt{22}}{4} when ± is plus. Add -20 to 4\sqrt{22}.
x=\sqrt{22}-5
Divide -20+4\sqrt{22} by 4.
x=\frac{-4\sqrt{22}-20}{4}
Now solve the equation x=\frac{-20±4\sqrt{22}}{4} when ± is minus. Subtract 4\sqrt{22} from -20.
x=-\sqrt{22}-5
Divide -20-4\sqrt{22} by 4.
2x^{2}+20x+6=2\left(x-\left(\sqrt{22}-5\right)\right)\left(x-\left(-\sqrt{22}-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -5+\sqrt{22} for x_{1} and -5-\sqrt{22} for x_{2}.
x ^ 2 +10x +3 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 2
r + s = -10 rs = 3
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -5 - u s = -5 + u
Two numbers r and s sum up to -10 exactly when the average of the two numbers is \frac{1}{2}*-10 = -5. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-5 - u) (-5 + u) = 3
To solve for unknown quantity u, substitute these in the product equation rs = 3
25 - u^2 = 3
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 3-25 = -22
Simplify the expression by subtracting 25 on both sides
u^2 = 22 u = \pm\sqrt{22} = \pm \sqrt{22}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-5 - \sqrt{22} = -9.690 s = -5 + \sqrt{22} = -0.310
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}