Solve for x, y
x=100
y=60
Graph
Share
Copied to clipboard
2x+y=260,x+3y=280
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+y=260
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=-y+260
Subtract y from both sides of the equation.
x=\frac{1}{2}\left(-y+260\right)
Divide both sides by 2.
x=-\frac{1}{2}y+130
Multiply \frac{1}{2} times -y+260.
-\frac{1}{2}y+130+3y=280
Substitute -\frac{y}{2}+130 for x in the other equation, x+3y=280.
\frac{5}{2}y+130=280
Add -\frac{y}{2} to 3y.
\frac{5}{2}y=150
Subtract 130 from both sides of the equation.
y=60
Divide both sides of the equation by \frac{5}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{1}{2}\times 60+130
Substitute 60 for y in x=-\frac{1}{2}y+130. Because the resulting equation contains only one variable, you can solve for x directly.
x=-30+130
Multiply -\frac{1}{2} times 60.
x=100
Add 130 to -30.
x=100,y=60
The system is now solved.
2x+y=260,x+3y=280
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&1\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}260\\280\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&1\\1&3\end{matrix}\right))\left(\begin{matrix}2&1\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&3\end{matrix}\right))\left(\begin{matrix}260\\280\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&1\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&3\end{matrix}\right))\left(\begin{matrix}260\\280\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&3\end{matrix}\right))\left(\begin{matrix}260\\280\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-1}&-\frac{1}{2\times 3-1}\\-\frac{1}{2\times 3-1}&\frac{2}{2\times 3-1}\end{matrix}\right)\left(\begin{matrix}260\\280\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&-\frac{1}{5}\\-\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}260\\280\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 260-\frac{1}{5}\times 280\\-\frac{1}{5}\times 260+\frac{2}{5}\times 280\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\60\end{matrix}\right)
Do the arithmetic.
x=100,y=60
Extract the matrix elements x and y.
2x+y=260,x+3y=280
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2x+y=260,2x+2\times 3y=2\times 280
To make 2x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 2.
2x+y=260,2x+6y=560
Simplify.
2x-2x+y-6y=260-560
Subtract 2x+6y=560 from 2x+y=260 by subtracting like terms on each side of the equal sign.
y-6y=260-560
Add 2x to -2x. Terms 2x and -2x cancel out, leaving an equation with only one variable that can be solved.
-5y=260-560
Add y to -6y.
-5y=-300
Add 260 to -560.
y=60
Divide both sides by -5.
x+3\times 60=280
Substitute 60 for y in x+3y=280. Because the resulting equation contains only one variable, you can solve for x directly.
x+180=280
Multiply 3 times 60.
x=100
Subtract 180 from both sides of the equation.
x=100,y=60
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}