Solve for x, y
x=18\text{, }y=-25
x=4\text{, }y=3
Graph
Share
Copied to clipboard
2x+y=11,-y^{2}+2x^{2}=23
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+y=11
Solve 2x+y=11 for x by isolating x on the left hand side of the equal sign.
2x=-y+11
Subtract y from both sides of the equation.
x=-\frac{1}{2}y+\frac{11}{2}
Divide both sides by 2.
-y^{2}+2\left(-\frac{1}{2}y+\frac{11}{2}\right)^{2}=23
Substitute -\frac{1}{2}y+\frac{11}{2} for x in the other equation, -y^{2}+2x^{2}=23.
-y^{2}+2\left(\frac{1}{4}y^{2}-\frac{11}{2}y+\frac{121}{4}\right)=23
Square -\frac{1}{2}y+\frac{11}{2}.
-y^{2}+\frac{1}{2}y^{2}-11y+\frac{121}{2}=23
Multiply 2 times \frac{1}{4}y^{2}-\frac{11}{2}y+\frac{121}{4}.
-\frac{1}{2}y^{2}-11y+\frac{121}{2}=23
Add -y^{2} to \frac{1}{2}y^{2}.
-\frac{1}{2}y^{2}-11y+\frac{75}{2}=0
Subtract 23 from both sides of the equation.
y=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-\frac{1}{2}\right)\times \frac{75}{2}}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1+2\left(-\frac{1}{2}\right)^{2} for a, 2\times \frac{11}{2}\left(-\frac{1}{2}\right)\times 2 for b, and \frac{75}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-11\right)±\sqrt{121-4\left(-\frac{1}{2}\right)\times \frac{75}{2}}}{2\left(-\frac{1}{2}\right)}
Square 2\times \frac{11}{2}\left(-\frac{1}{2}\right)\times 2.
y=\frac{-\left(-11\right)±\sqrt{121+2\times \frac{75}{2}}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -1+2\left(-\frac{1}{2}\right)^{2}.
y=\frac{-\left(-11\right)±\sqrt{121+75}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times \frac{75}{2}.
y=\frac{-\left(-11\right)±\sqrt{196}}{2\left(-\frac{1}{2}\right)}
Add 121 to 75.
y=\frac{-\left(-11\right)±14}{2\left(-\frac{1}{2}\right)}
Take the square root of 196.
y=\frac{11±14}{2\left(-\frac{1}{2}\right)}
The opposite of 2\times \frac{11}{2}\left(-\frac{1}{2}\right)\times 2 is 11.
y=\frac{11±14}{-1}
Multiply 2 times -1+2\left(-\frac{1}{2}\right)^{2}.
y=\frac{25}{-1}
Now solve the equation y=\frac{11±14}{-1} when ± is plus. Add 11 to 14.
y=-25
Divide 25 by -1.
y=-\frac{3}{-1}
Now solve the equation y=\frac{11±14}{-1} when ± is minus. Subtract 14 from 11.
y=3
Divide -3 by -1.
x=-\frac{1}{2}\left(-25\right)+\frac{11}{2}
There are two solutions for y: -25 and 3. Substitute -25 for y in the equation x=-\frac{1}{2}y+\frac{11}{2} to find the corresponding solution for x that satisfies both equations.
x=\frac{25+11}{2}
Multiply -\frac{1}{2} times -25.
x=18
Add -25\left(-\frac{1}{2}\right) to \frac{11}{2}.
x=-\frac{1}{2}\times 3+\frac{11}{2}
Now substitute 3 for y in the equation x=-\frac{1}{2}y+\frac{11}{2} and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{-3+11}{2}
Multiply -\frac{1}{2} times 3.
x=4
Add -\frac{1}{2}\times 3 to \frac{11}{2}.
x=18,y=-25\text{ or }x=4,y=3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}