Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

y=-2x-z-1
Solve 2x+y+z=-1 for y.
0x+3\left(-2x-z-1\right)+2z=5 -x+2\left(-2x-z-1\right)-z=3
Substitute -2x-z-1 for y in the second and third equation.
x=-\frac{1}{6}z-\frac{4}{3} z=-\frac{5}{3}-\frac{5}{3}x
Solve these equations for x and z respectively.
z=-\frac{5}{3}-\frac{5}{3}\left(-\frac{1}{6}z-\frac{4}{3}\right)
Substitute -\frac{1}{6}z-\frac{4}{3} for x in the equation z=-\frac{5}{3}-\frac{5}{3}x.
z=\frac{10}{13}
Solve z=-\frac{5}{3}-\frac{5}{3}\left(-\frac{1}{6}z-\frac{4}{3}\right) for z.
x=-\frac{1}{6}\times \frac{10}{13}-\frac{4}{3}
Substitute \frac{10}{13} for z in the equation x=-\frac{1}{6}z-\frac{4}{3}.
x=-\frac{19}{13}
Calculate x from x=-\frac{1}{6}\times \frac{10}{13}-\frac{4}{3}.
y=-2\left(-\frac{19}{13}\right)-\frac{10}{13}-1
Substitute -\frac{19}{13} for x and \frac{10}{13} for z in the equation y=-2x-z-1.
y=\frac{15}{13}
Calculate y from y=-2\left(-\frac{19}{13}\right)-\frac{10}{13}-1.
x=-\frac{19}{13} y=\frac{15}{13} z=\frac{10}{13}
The system is now solved.